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This paper presents a heterogeneous finite element method for a fluid—solid interaction
problem. The method, which combines a standard finite element discretization in the
fluid region and a mixed finite element discretization in the solid region, allows the
use of different meshes in fluid and solid regions. Both semi-discrete and fully discrete
approximations are formulated and analysed. Optimal order a priori error estimates in
the energy norm are shown. The main difficulty in the analysis is caused by the two
interface conditions which describe the interaction between the fluid and the solid. This
is overcome by explicitly building one of the interface conditions into the finite element
spaces. lterative substructuring algorithms are also proposed for effectively solving the
discrete finite element equations.

Keywords: acoustic and elastic waves; fluid—solid interaction; absorbing boundary
condition; finite element and mixed finite element methods.

1. Introduction

Fluid—solid interaction problems have long been subjects of both theoretical and practical
studies, and important applications of such problems are found in inverse scattering,
elastoacoustics, geosciences, oceanography and the automobile industry. For some recent
developments on modelling, mathematical analyses and numerical simulations, we refer
to Demkowiczet al. (1991), Feng (2000), Fergg al. (2001), Santost al. (1988) and the
references therein.

The purpose of this paper is to develop a heterogeneous finite element method for
a fluid—solid interaction model which was recently proposed in Fenhgl. (2001).
The heterogeneous method (in space) consists of standard Galerkin finite element
discretizations in the fluid region and mixed finite element discretizations in the solid
region which simultaneously approximate the stress and displacement variables. Fully
discrete time-stepping schemes are also considered in the paper. Our main objective is
to establish some optimal order error estimates in the energy norm of the fluid—solid
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interaction problem for both the semi-discrete and fully discrete heterogeneous finite
element methods. The main difficulty for establishing the optimal order error estimates
is caused by the interface conditions which describe the interaction between fluid and solid
on their contact surface. We handle the difficulty by explicitly building one of the two
interface conditions into the finite element spaces.

Numerical analysis for the fluid—solid interaction model and its variants have been
studied by a number of authors. Demkowiez al. (1991) proposed and analysed
hp boundary element methods for the model without introducing absorbing boundary
conditions. Feng (2000) developed and analysed the (standard) finite element method and
some domain decomposition algorithms for the model. Makridetikés. (1996) analysed
the linear finite element method in one dimension for the model in the frequency domain.
Santoset al. (1988) proposed and analysed a finite element method for the Boit model
for propagation of low-frequency elastic waves in a fluid-saturated porous solid. See also
Cowseret al. (1996), Dupont (1973), Makridakis (1992) and the references therein for
detailed expositions on finite element and mixed finite element methods for acoustic and
elastic wave equations.

The organization of this paper is as follows. In Section 2 we introduce some space nota-
tion, and state the fluid—solid interaction model and some basic facts about the model. In
Section 3, we formulate a semi-discrete heterogeneous finite element approximation for the
fluid—solid interaction model and establish an optimal order a priori error estimates in the
energy norm. In Section 4 we propose a fully discrete heterogeneous finite element method
by discretizing the semi-discrete method in time. An optimal order a priori error estimate is
also established for the fully discrete method. In Section 5 we propose some parallelizable
domain decomposition algorithms for solving the fully discrete finite element system.

2. Thefluid—solid interaction model

We consider the propagation of waves in a composite mediuwhich consists of a fluid
part2; and a solid parfs, thatisf2 = 2 U . 2 will be identified with a domain ifRN
for N = 2, 3, and will be taken to be of unit thickness whdn= 2. LetI" = 92t N 92
denote the interface between two media, andlet= 02+ \ I" andls = 9%\ I'. The
fluid—solid interaction model we are going to study in this paper is given by Eealg
(2001) and Feng (2000):

1 .

2P —4Ap =g in 2¢ x (0, T), (2.1)
psUtt — div(g(g)) - gs in 25 x (0, T), 2.2)
ap

—— — pfUit -ng=0 onl' x (0, T), (2.3)
ons ~

g(g)ns — pn¢ = onl' x (0, T), (2.4)
1 ap

2
——~

psAst + g)ns —0 onrls x (0,T), (2.6)
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P(X,0) = po(X), pt(x,0) = p1(x)  in Ly, (2.7)
u(x, 0) = up(x),  Ut(x, 0) = uz(x) in {2, (2.8)

where
g(g) = asdivul + 2usg(g), g(g) - %[VE + (VE)T]. (2.9)

In the above descriptior is the pressure function iR andu is the displacement
vector infs. pi (i = f, s) denotes the density ¢%, n; (i = f, s) denotes the unit outward
normal t0df2. As > 0 andus > O are the Lard constants off%. Equation (2.9) is the
constitutive relation for’s. | stands for theN x N identity matrix. The boundary condi-
tions in (2.5) and (2.6) are the first-order absorbing boundary conditions for acoustic and
elastic waves, respectively. These boundary conditions are transparent to waves arriving
normally at the boundary (cf. Engquist & Majda, 1979; Lysmer & Kuhlmeyer, 1949).
is anN x N symmetric positive definite constant matrix. Equations (2.3) and (2.4) are
the interface conditions which describe the interaction between the fluid and the solid. For
adetailed derivation of the above model and its analytical analysis, we refer toeFaing
(2001) and Feng (2000).

The standard space notation is adopted in this paper. For exampi®), k > 0
integer, denotes the Sobolev spaces over the doMaitvhenk = 0, HO(D) = L2(D),
and (-, -)p is used to denote the standard inner product.8(D). || - |lx.p denotes the
usual norms orHK(D). For a Banach spacB, L9(0, T; B) stands for the space &f9—
integrable functions with range iB. W*-4([0, T]; B) is the space of functions whose up
to kth-order derivatives with respecttare inL%(0, T; B). B = (B)N andB = (B)N*N
stand for the vector and tensor spaces whose components are w&paaedr denote
arbitrary vectors and tensors Bi= (B)N andB = (B)N*N, respectively. In addition, we
introduce the following special space notation:

1
Pr = (W0, T: HE(@0) N {pr e LA, T; LA1))),
j=0

2
Qt =P N[\ W0, T; H*1(2) N {pr € L?(0, T; L(I'r )},
i=1

fs = J_(i]OWJUC’O(o,T; HET@9) 0 fu e L2(0.T: L2aw) .
Vs =UsN (2] w2 (0,T: H2(29)) n fur € L2(0.T; L2 ) |,

j=1
Qr = QrNL¥O.T:HA@2).  Vs=VsNL®(0,T: HA)),

T}’

He =
\7V {(p, u, g) e HY(21) xg (£25) x I;is; ans — PNt =OonF},

Z?Q
Z?Q

{o— € L2(): divg € L2(1).

where(divo); = Z?‘Zl djojj fori =1,..., N.



674 X. FENG AND Z. XIE

We shall make the following physical and mathematical assumptions throughout the
paper. The same assumptions were made in Eealg (2001) and Feng (2000).

Assumption A:

e (Al) p; = constant> 0, oo > Ps = ps = ps(X) = ps > O0- As, pus are all positive
constants.

e (A2) 2y c RN, 25 ¢ RN for N = 2 3 are bounded open sets with Lipschitz
continuous boundar§ 2 anda {2, respectively.

e (A3) 2 = ¢ U s, measfs) # 0, measss) # 0. Assume thal” # @. Note that it
is acceptable if one of'y andls is empty.

e (A4) Suppose that the initial datum functions satisfy the following compatibility
conditions.

Compatibility Condition C:

e (C1) upe 52((25) and u; € H'(f;) are said to be compatible on if
psAsU1’+ o (Uo)ns = 0, onTs.

e (C2) pp € H2¢) and yp € I:|2((25) are said to be compatible od’ if
o(Up)ns — pont =0,0onl".

Under the above assumptions, the following existence, uniqueness and regularity results
were established in Ferggal. (2001) for the fluid—solid interaction model (2.1)—(2.9).

THEOREM1 The initial-boundary value problem (2.1)—(2.9) has a unique weak solution
(P, U) € Pt x Vs (in the distribution sense). Moreover,(#; and (s are convex polygon

or polyhedron domains, theip, u) € Ot x Vs; and bothp andu are smooth it variable

if the source functions are smoothtivariableé,

Next we will derive an equivalent mixed formulation for (2.1)—(2.9). This will be done
by introducing the stress tenser= a(u) as an additional independent unknown variable
so thatp, u ando will be determined simultaneously by solving the mixed formulation of
the problem. For more exposition on the theory of mixed finite element methods, we refer
to Brezzi & Fortin (1991).

Applying the matrix trace operator tr to both sides of (2.9) and solving (9(([1)) we
have

e e TN=2

s — — Us(As T Us

2 tr(g( )) Vs tr(g), whereys s N3 (2.10)
2us(Bhs + 2us)’ .

Substituting (2.10) into (2.9) and then differentiating the equation with respeetéoget
1
200 ystr<at)l - g(g}) —o. (2.11)

Now testing (2.1), (2.2) and (2.11), and integrating by parts and using the boundary
and interface conditions we conclude that the unique weak solution to problem (2.1)—(2.9)
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(cf. Theorem 1) p, u, o) :[0,T] — W satisfies for anyq, v, x) €W

1 1
(gptt,q>0f+(Vp,Vq)nf+<Ept,q> _<Pfuit'ns,Q>F=(gf,Q)Qf, (2.12)

ry

() + (weavr) , +{ (o) "ma o) —fuxms), =0 @19
(- 0),,, = (dve ), = (o0),,, @14
00(X) 1= g(x, 0) = )\str(i(@(x))) n zusi(@(x)) VX € 0, (2.15)
where

o(z:0) = (57:%) , ~(w(e) v(x) 216)

LEMMA 1 The problem defined by (2.12)—(2.16), (2.7) and (2.8) has a unique solution.

Proof. The existence follows from Theorem 1. To show the uniqueness, it suffices to
show the system only has the trivial solutiorgif = 0, gs = 0, ug = 0, (hencegg = 0),

up =0, pp=0andp; =0. ~ ~ ~

"~ After integrating (2.12) with respect t settingg = p, x = pfo in (2.13) and

v = pfUg in (2.14), and adding the resulting equations we get -

2

t 2
td)]l + Hv/ (ods|  + a( )+ H/—u H2
—— | |- o,0
2t P 0.0 0 p 0.0, pPf 7,9 prsNt 0.%
1|2 -1
+ ”%p or +,0f<<,05vis) gn57gns>Fs =0, (2.17)

where we have used the fact thiat u,g0) eW.

Since each termin (2.17) is non-negative (see Lemma 3.2 of Astald 1984 for the
proof of the positivity of the bilinear forma(-, -)), the zero initial data immediately implies
thatp =0a.e.inf2s x (0, T) andu = 0a.e. inf2s x (0, T). The proof is complete. O

Weremark that (2.12)—(2.16) and (2.7)—(2.8) is called a mixed formulation for problem
(2.1)—(2.9). In Sections 3 and 4, we will construct and analyse some semi-discrete and fully
discrete finite element methods for problem (2.1)—(2.9) based on this formulation.

3. Semi-discrete finite element approximations

In this section we shall formulate semi-discrete mixed finite element approximations for the
initial-boundary value problem (2.1)—(2.9), and de@iori error estimates under certain
assumptions on the approximate starting values and on the smoothness of the solution.
Throughout the rest of this paper, unless stated other@isadCp will denote a general
positive constant, not necessarily the same in any two places.
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3.1 Formulation of semi-discrete finite e ement methods

For simplicity of presentation, we assume that b@hand (2 are polygonal domains. Let

Tn be a quasi-uniform ‘triangulation’ of2 ¢ U 25 with the mesh sizér > 0. Although

it is not necessary, to avoid some complicated technicalities, we assunig ttesults in
matched grids on the interfadé that is, no vertex of finite elements of one subdomain lies

in the inside of an edge/face of a finite element from the other subdomain on the interface
I'. Let P? c HY(0¢) be a (Lagrange) finite element space consisting of continuous

piecewise polynomials of degréetk > 1) on Zp|g,, and VI x Hh L2(£2) x Hs be

apair of stable mixed finite element subspaceggiy, for the Imear elasticity problems
Several choices O‘f/h X Hh are known to be acceptable (cf. Brezzi & Fortin, 1991). In

this paper we only con5|der the family of subspaces due to Aretodd. (1984), which
were constructed using composite elements. Specifically, W&’S'Tek HQ denote the

Arnold—Douglas—Gupta element of ordetk > 2), which meang that the components
of Vh are polynomials of degree— 1 on each triangle offn|,, and components dﬂh

are pleceW|sd§th -order polynomials on each triangle. Recall that Arnold— Douglas—Gupta
elements satisfy the inclusion di ¢ VJ.

Define the space

wh = {(Qh, oh, fh) e PP x Vh x HY; s — Ghn ¢ = O pointwise onF}.

We remark that the constraint ofi in the definition ofw" can be fulfilled by requiring
the nodal parameters gfn¢ and the nodal parametersgfns on I" to be the same since

the values ofrhnS at the nodes on triangle edges are used as the degrees of freedom for
constructing the spadésh X H (cf. p. 15 of Arnoldet al., 1984 and Section 5).

From Ciarlet (1978) and Arnolet al. (1984) we know that for anyq, v, ‘r) €
HL(2¢) x L2(25) x Hs N H¥F2(020) x HK(25) x H¥2(425), there existsan, vn, ) €
PR x VI x HP such that C

o

19 = dnllo,2; +hlIV(@—an)llo.e; < ChJ: lallj,ee 1<) <k+1, (3.1)
lg —anllory <Ch'llalljry, 1<j<k+1, (3.2)
i RS T

S [ M ST P
-y <one], o 1ieken o

Now for any(q., v, 7) € W N H* 3 (02¢) x H¥(025) x Ijk+%(!2$), first, choosey, :=
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Qnv, the L2-projection ofg into Vsh defined by

(3 ~ Qno, wh>0 —0  VwpeVM (3.6)

S

It is well known that there holds (Ciarlet, 1978)

Hv—thH <ChJH Hmf 1<j <k 3.7)

Second, Ietrh ‘= T, wheremy, is the projection operator frorﬁiS to Hh defined in

Arnold et al. (1984) (see pp 5, 15, 18 and 19 of Arnaddal., 1984) Hence (3.4) and
(3.5) hold. Finally, legy, € Pf be the elliptic projection of] defined by

(V(Gh — ), V¥, =0 ¥ym e P{ N HL(R20), (3.8)
(0h—9.nn)r =0 Vi € MY, (3.9)
whereH1.(2¢) := {¥ € HY(2¢); ¥|r = 0}, (-, -} denotes thé?-inner product o,
and M? is the space of all piecewise polynomials of dedtea I". From the finite element
theory for elliptic problems (cf. Balika, 1973 and Chapter 5 of Brenner & Scott, 1994)
we know that such gy, exists and satisfies the estimates (3.1) and (3.2), particularly when

25 is a smooth or convex polygonal domain.
Recall thatr,, defined in Arnoldet al. (1984) satisfies

/(3—rh)ns-nhds:/(z_nhz)ns-nhds=o Vin e (PN (3.10)
e ™ ~ e ~ ~ ~

for each edgee of the triangulationZy,. For (@, v,7) € W nN Hk+%(9f) X I:|"(!25) X

Hk+%(ﬂs), let (gnh, vh, Th) be chosen as above, then it follows from (3.9), (3.10) and the
definition of W that

/(thf —Thn5>~nhdS=/(Qh—q)nf -nhds+f (qnf —zns)-nhds
r ~ ~ r ~ r ~ ~

+f (z—rh)ns-r)h ds =0, Vnn € [M;L]N.
r\= = ~ ~

Since(ghns — ‘[Nhns)|[' € [Mjl]’\‘, hence,rj(x)nS = gh(X)ns, VX € I, consequently,

(Gh, vn, Tl‘) e WM. In summary, we have proved the following lemma.

LEMMA 2 Forany (q,v,t) € W N HY 3 (02¢) x H¥(2s) x I:|k+%(!25), there exists
(Gh, vh, Th) € W such that (3.1)—(3.5) hold.
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Based on the weak formulation (2.12)—(2.16), we define our semi-discrete mixed finite
element method as: Find, U, I7) : [0, T] — WM such that for anydh, vh, xn) € W"

1 1
<—2Ptt,Qh> + (VP, Vah) o +<—Pt,Qh>
C 2 c Iy

a(Jgt, X%h> + (Lit, div th)ﬂs + <(Psés)_lgns, X%hns>F

S

- (Lit, )Q‘”S>p —0 (312

U ,v)
(psit ) a

S

_ (divg, vh)g = (s. vh) - (3.13)
PO =P, RO =P, UQO= Lio, lit 0) = UN1, ]g(O) = I, (3.14)

wherePy, Py, Ug, U1 and Il are some approximate starting values which will be specified
in the next section.

REMARK 1 Since the problem (3.11)—(3.14) can be rewritten as a linear system of second-
order ordinary differential equations which has same number of unknowns and equations,
its existence follows from standard ordinary differential equation theory (Hale, 1969). The
uniqueness can be proved by exactly following the proof of Lemma 1.

3.2 Apriori error estimates

Throughout the rest of this sectiofp, u, o) denotes the weak solution to (2.12)—(2.16),
(2.7) and (2.8) as described in Lemm&R, U, IT) denotes the solution to (3.11)—(3.14).

LEMMA 3 Letr = p—-P,e=u—-U andE =0 - H there exists a constafit > 0
such that there holds the mequallty

2 2 2
”rt”Lw(LZ(Qf)) + ”r ||L°°(H1(Qf)) + ||rt|||_2(L2(Ff))

2 2
2 Y [ +|Em
Lo22e)) I~ ez IS

L2(L2(Is)

T
C/ (IV(G — POl o, + 16t — Prellf o, + 16 — PelIg -, ot

v [[(fn-ull, (@ w) )0

T
S [ ([ =auly  + lie =y, + (e~ )]
+ /0 Xt — ott OQS+ Xt — Ot OFS+ IV{ xtt — ott 09)

+(|no, p, +[EO[L ,, + o,

* Hett( )H LZ(QS))

(3.15)

L2(02¢) L2(02%) HL(21)
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forany (§. 9. %) € H2(0, T: W).

Proof. Differentiating (2.13) with respect toyields

-1
a(ow x) + (e divy)  +((psAs) otns xns) —(uexns) =0.  (3.16)
Since(q, v, x) € W, we have from (2.12), (2.14) and (3.16) that
iptt q +(Vp, Vo) +,0fa<0tt X)+/0f<utt diVX)
¢z . ’ f ~ x ~ R0
+ }pt,q +pf<(PsAs)_10tns,an> = (9t, Dy (3.17)
C It ~ ~ ~ Is f
(psuee.v) , = (dva.v) = (gsv) - (3.18)
Similarly, we have for anyan, vh, xn) € W"
1 .
(? Pit, qh) o, + (VP, Van) o; + Pfa<%t1 xg) + ot (an, div @)Qs
+ }Pt, Th +Pf<(Ps-As>_1ths, ths> = (9f,0n)p;» (3.19)
C I ~ ~ ~ Is f
(3.20)

(pset.n) , = (v ILovn) | = (gsrvn) -
SinceW" ¢ W, for any (g, vh, xh) € WP, subtracting (3.19) from (3.17) and (3.20) from

(3.18) we get the following error equations:

1 .
(—zrn, Qh> + (Vr, Van) o; + ot (%t» d|VXNh)9 +,0fa(E~tt, X~h>
f ~oes ~or
=0, (3.21)

c(rm) +orl(ms) Emm,
(3.22)

(psu-mn) o, = (A E- ), =0

For any(q g ) [0, T1 — Wh, set(an, vh, xn) in (3.21) and (3.22) as follows:

gh =r¢ + (G — po)s vh=ett+<ﬁtt—utt>, XNhZEt‘F()Qt—O;t)-
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Wethen have

S

1 )
(@Htﬁt) + (Vr, Vro) o, +/0f<ettad|V Et)
¢ ~ ~

1 -1
+ Pfa(Ett, Et) + <_rts rt> + pf<<;05v45) Eins, Etns>
~ O~ C It ~ A ~ I

S

1 N o
+ (_Zrtt» qt - pt) + (Vrs V(qt - pt)).Qf
C 24

+ of (ett, diV(}Zt - 0'1))9 + ,Ofa<Ett, (it - Gt)>
~ P~ I~ S ~ ~ ~

+ pt <(Ps/is)_1§tns: ():S - <7t)ns>Fs =0, (3.23)

o

+<1r G pt>
—It, Y —
c Iy

, — div E;, ) ( , D —u)
Pf(PsecNtt eit)(zs Pf( ~t th QS'|-,0f pseLtt vtt — Utt 0

S

— ot (div Eq, u — uwtt)ﬂ —0. (3.24)

S

Adding up (3.23) and (3.24) gives

1d 1r
2dt c!

2 2
+ IV g, + | vorse:|  +pra(E E)
0,2¢ ? ~ 110,82 ~ o~

1 —1
+ <—ft, Ft> + <(psAs) Etns, E ns>
C It ~ ~ ~ I

S

1 N ~
== <—zrn, G — pt) — (VL. V(@& — po)ey
C 2%

- pf (ett, diV()?t - Ut))Q - ,Ofa<Ett, At — Ut)
~ A~ ~ s B ~

~

- , 0t — U div E¢, Utt — U )
of (,Osawtt tt ~tt)(25 + o ( ~t, Utt — Utt o
1 -1 N
—<—rt,Qt — pt> —Pf<(PsAs) Etns, (Xt —Ut>ns>
Cc I ~ ~ ~ ~ Is
< (Zred - + VG o, + V@ — POl
X C2 tt» Qt pt 0 O,Qf qt pt O,Qf
f

- pf (ett, diV()?t - Ut))(z - pfa(Etts At — (ft)
~ ~ ~ s E ~

- pf (,Osettt, Dyt — Utt)Q + pt (diV Et, 0t — Utt)
~ ~ ~ s ~ ~ ~

S

S

+6<%rt, rt>n +C(8)(Gt — P G — m)n +5<(Psvis>_1§tnss E‘”S>r

+ O (o) (it~ (5~ )] @29

~ s
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From (2.14), (3.13), (3.22) and the fact that #i§ c V" we obtain that

_ D —u div E, b —u) =( ( _ ) _u) _
Pf(,OsetNtt Utt Ntt)gs—i-/of( =t Utt It o Pf thf gf . Utt It o

(3.26)
Let
o=2(13] 1wz +|vermed” )+ 5oa(ElE)
yib =35 2t 0.0 0,024 Pt Ps&t 0.0 SPa{ B B,
then it follows from (3.25) and (3.26) that
dy(t) -1 1|
AT Eine, E il
g () Ens J”S>rs+ 7 o r
1
< _ (= § — _ vl 7 —
< <Czr“’qt pt)gf pf(%t,dlv()g (2))95
—pra(Ew fi—a) , +IVEI o, +CIVG@ — POIG o,
2 2
A 2 _ 5
el pidr, + (e - w) 2, + G-l
2
Ott — . 3.27
+ =l ] (327)
Integrating (3.27) ori0, ) we have
T -1 T 2
E E dt — dt
Y(T)‘l‘/o <<,Osvis) ~tNs, %tns,>FS +/0 ﬁrt or,
' 1
<Yy - —Ttt, G — a( Et. Xt —
y(©) /0 |:<02 tts Ot pt)gf+,0f (&Et Xt Zt)
(s 2 5 2
i (e dv(f —or))  —IVFIg o, ~ CIVE ~ I o,
2 2
— A — 2 — — —_ v —
et - i, (-3, [~
2
—| 01t — at. 3.28
ER (529

Integrating by parts we get

—/T<if O — ) dt——(if()A()— ())
5 Cztt,Qt thf = Cth’QtT pr(T 0

1 . 1o,
+ (@rt(o), G (0) — Dt(o))Qf +/O (@rb Get — F’tt)Qf dt
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2

5 | 2re()
¢,

+C@®G() — pOIIE o,

0,02¢

+C/0 (||rt(t>||mf+||qu<t>—pn<t)||mf)dt( 1(0). & (0) - |o[(0)>!2
f

(3.29)

Similarly,

4

[ ol - <sfise], reolgo-acl,,

0,82

+ (o], + |0 - o], )a+pa(E0. 20 - 20) .
(3.30)
and
[ (ol -a)) s aco] +col(zo-ao)l,

/ (\a(t)Hom +tht(t)—an(t>Hom) - rt(2 (0. dv(#(0 -2 0)) ,
(3.31)

It follows from (3.29)—(3.31) and the following inequality:
(15,0, < I$OIG o, + fo g MG o, + et o, 1t (3.32)

that

T -1 1 2
y(T) +/ |:<<,Os-/is) Etn& Etns>F + HTH or :| dt
f

<s(In@I3 g, + | Et<r>HOQS +|ac )HOQS)

T
+f0 [y(t) + V@ — PG o, + 16 — Prell§ o, + 16 — pell 1,
2

e
Xtt — tt 0.0

—u
#lonuly, +[(@e-2) |,

+ Hdlv(xtt - an) HO ot HX‘ — o Hz S]dt +Cy(0). (3.33)

Finally, the desired estimate (3.15) follows by taking the constarhall enough in
(3.33) and then applying Gronwall's inequality. The proof is completed. O

We now are ready to state the main theorem of this section.
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THEOREM 2 Suppose there exists a const@jt> 0 which is independent dif such that
the starting values satisfy

i |us—u Hu —u H ”HO—G H < Cohk+L,
® H LU gy T T -3y TS T Pl-d gy SO
(i) IPo— Pollni(os) + I1PL— Pallpie) + HUO uOHHl(QS)
P R
+H ! Hl(.QS)+ A £ H1(8s) 0

Also, suppose that

Cr:=| p||H2(Hk+1(.Qf)) + HEH

+HaH + <
H2(HR(2e) | I~ 2k 2g) T ST HL(HK(0s)

Then, there exists dmindependent constafit > 0 such that
Pt — Pl o2y + IVP = Ptz + 1Pt — PellL2qzcryy

+ | = moms

5

+ o]
Loz I~ =~ Loz

di —HH < C(Co+Cph*. (3.34
+H |v(g %> L2 (Co+Cy) (3.34)

+ H Ut — Ut H L2(L2(T))

Proof. The proof is based on an application of Lemma 3. To this end, the main task is to
bound||Et(0)ll 20, andliext (0l 2(g)-

Werecall that( p, u, o ) and( P, U, II) are the solutions of the initial value problems

(2.12)—-(2.16) and (3.11)—(3.14), respectively. Subtracting (3.12) from (2.13) and (3.13)
from (2.14) and setting = 0 in the resulting equations gives the following error equations
att = 0:

a(E0). xn) + (2 0. divn)  +((psAs)  E@ns. xnns
(B0 xn) + (2@ dvn) , +({(s45) "E©ONs 70

S

- (2. xons), =0
T (3.35)

(pseu(@.vn) , —(dVE©. ) , =0, (3.36)
for any (G, vn, xn) € wh.

Taking vh = @t(0) + (Qnutt (0) — Uy (0)) in (3.36) and using=(0) = a0 — HO it
follows from the Schwarz mequallty, (Al) and (3.7) that

oy (P, @00)

=(dVE©, &®)  + (divE(©), Qnun (0) — U (0))
~ (psa:(0), Quut(©) - U (0))

,o

+ Ch% H Ut (0) H

+ CHle(ao — HO)

L2(1%) L2(12%) HK(2s)
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which, with the assumption on the initial data, implies that

Hen( ) < Chk, (3.37)

L2(2)
Next, taklng)(h = nhot 0 — Ht(O) and writing Et 0 = (at(O) — J'rhat(O)) + Xh in

(3.35), it then follows from the Schwarz mequallty the trace mequallty and the inverse
inequality (boundingH 2-norm in terms ofL2-norm) (see Brenner & Scott, 1994; Ciarlet,
1978; Arnoldet al., 1984) that

a(xn xn) = — (@@, dv ) —((ssAs) EOns. xans
(1) = —(a 0. dvn) , —((rss) "EONs 7ns),

S

+ <%(O), )gms>F —a (63(0) — 7hot(0), )@)

<@ O] g [ 0] 2 g, + Sl EONS] g frons] 3.,
+ao], g Lonel s, + Ca@-mao] ol .,
\COHXhHLz(QSﬁC“ leo] ool by
+ H E(O)nS (FS)] + C”at (©) — 7o ol o (3.38)

for some undetermined constagy > 0. Noticing thatet (0) = u; — Uz and E(O) =

a0 — HO then from (3.38), the coercivity &(-, -) on Hs X Hs (see Arnoldet al., 1984),

and the approximation properties (3.4) and (3.5), the assumptlon on the initial data, and
choosingcg small enough we obtain

<Ch® and H E¢(0) < Chk. (3.39)

H X~h L2(2s) L2(£2)

Next, we writeE = (¢ — 7tho) + (who — II), since divH{ ¢ V' and
(div(g — nhg), vh) =0 Yo € Vsh,

after choosingvy, = div(zho — II) in error equation (3.22) and using the Schwarz
inequality we get

u — U (3.40)

i — <
Hle(nhg g) H Loo(L2(02%)) bs ~ i H Loo(L2(02%))
which then gives an upper bound ofl¥) for the last term on the left-hand side of (3.34)
if [Jutt — Utt [l Lo (L2¢025))» Which appears on the left-hand side of (3.15), is controlled by a

bound of same order.
Finally, the desired estimate (3.34) follows from (3.15), (3.37), (3.39), (3.40), and the
approximation properties (3.1)—(3.5). O
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REMARK 2 (a) Estimate (3.34) is optimal fofp — Pl cmn1(g,) and |l div(g —
Ig)||LM(Lz(QS)) but quasi-optimal for||p — Pllywi.eo 22y U — Ullwzeo(2(02y))
andllg — I flwweo(L2¢0y))-

(b) Clearly, Theorem 2 imposes strong constraints on the choices of approximations
of the initial data. To weaken the constraints, we have to estimate the error in
weaker norms. This can be done by integrating (2.12) and (3.11) inttimstead
of differentiating (2.13) and (3.12) as was done in the beginning of the proof of
Lemma 3. In fact, such an idea was used in the proof of Lemma 1. We also note that
the assumption (i) is consistent with the assumption (ii) in the light of Lemma 2.3 of
Feng (2000).

(c) Inthe cas&k = 1, a pair of stable mixed finite element subspaces was constructed
for the linear elasticity by Johnson & Mercier (1978). Since the Johnson—Mercier
element does not satisfy the inclusion & c V', the conclusion of Theorem

2 may not hold. However, it is possible to show a weaker result by modifying the
proofs of Lemma 3 and Theorem 2.

4. Fully discretefinite element approximations

In this section we shall introduce some fully discrete second-order-in-time finite element
methods for the initial-boundary value problem (2.1)—(2.9) by discretizing the system
of ordinary differential equations (3.11)—(3.14) using the finite difference time-stepping
method. We shall derive error estimates which are analogous to those of Theorem 2, and
some new estimates in weaker norms.

4.1 Formulation of fully discrete finite element methods

Let J be a positive integer. Lefit = % tn = nAt, and

u"=uttn), P =pt), U =U(t),
P"=Pt), ¢"=altn), [I"=IL(t).

We also let
Pn+% Pn 4 Pn+l ; Pn Pn+1 _ Pn
= a5 f = T
2 At
) Pn pn — Pn—l ; Pn pn+1 _ Pn—l
b = 47 C = 77
At 2At
Pn+1 + pn—l Pn+1 —2pn + Pn—l
P = ————— 92P" =
¢ 2At At? ’

PV =y P" 14 (1-2y)P" +yPML
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Itis easy to check the following identities:

PI’H—% _ Pn—%
At ’

9f P2 4 §¢ PN 3

2 9

3P" =3 P2 = gpP™E = 92P" = 3 3pP",

91 PME = 9P = 92P™ 2 = §3cP".

Our fully discrete finite element method is defined as seeking a sequence

{(P",U", TM})_, in W" such that for anydp, vh, xn) € W"
1 1 1

(-232Pn,Qh) + (VP™2,Van) o +<—3cP", Qh>

c .Qf c I't

1
—(pr0?U"ns,an) = (@F e, n=12...3-1, (4.1)

1
a(aflln, Xh) + (3fUn, diVXh>Q + <<psAs) IZnJ“%ns, ths>F
N x ~ ~/ (2 ~ ~ ~

S

—<8fL{”,ths>F=0, n=012..,3-1 (4.2)

. 1 n3
(psazgn’”j)gs‘ (dwgm,%)%: (gsf,zi,j)gs, n=12..,J-1 (4.3)
(PO.UC %) ewh, (PLut)ewn, (4.4)

where(P?, U°, 179 and(P?, U?) are some starting values, which will be specified in the
next section.

REMARK 3

(a) Notice that (4.1) and (4.3) are two-step schemes, but (4.2) is a one-step scheme. To

start the whole algorithm, we first need to set 0 in (4.2) to generatéjl.

(b) Equation (4.22 can be regarded as a central difference descretization of (3.12) at

t=1t,1:= % with mesh size%. As epected, it results in second-order
"2 :
truncation error inAt.

(c) For each fixedh, (4.1)—(4.4) can be expressed as a square linear system, hence,

to verify its well-posedness, it suffices to show the uniqueness. To this end, it is
sufficient to show that the trivial solution is the only solution for zero sources and
zero initial data. Again, for the readers’ convenience, we sketch the proof in the
following. Applying p dc to (4.2) we get

1 1. -1 1
of a<821~7n+?, Xh) + pof (82U "2, div Xh)(2 + Pf<(PsAs> acHT—Zns, th$>F
~ ~ ~ ~ s ~ ~ ~ s

1
—pf<82lg”+?,ths>F =0.

Next, adding the above equation to the one resulting from averaging (1grat
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n + 1 steps, and applying: 3+ to (4.3) yields

1 .
(;azp“%, qh) + (VP2 Van g, + pr (52U™2, divrn)
2 ~ ~

S

1
+ pfa(azlz“%, Xh) + <EaCP”+%,qh>
~ § r

1 el n+3.
+ pt <(PSAS> dcII" " 2ng, ths>F = (Of
~ ~ ~ S

1
P

’ qh)Qf’ (45)

. 1 1
(prosira?Um on) = pr(divacI™2 o) = pr(9eg™ 2 0n) . (46)

~ S S S
Now, suppose thajjf =0,0s =0forj=1,2,...,J,andP? = P, =0, U? =
Ul = 0, 1° = 0 (hence,lI* = 0). First, set(ch, xn) = (3cP™Z, & [1"7)

in (4.5) andvy, = pf829n+% in (4.6), then add the resulting equations. Finally,

applying the discrete Gronwall inequality to the combined equation. Then we get
P"=0,U"=0andl" = 0for0 < n < J. The proof is completed.

4.2 Error estimates

For the fully discrete mixed finite element method (4.5)—(4.6), there holds the following
error estimate.

THEOREM 3 In addition to the regularity assumption of Theorem 2, suppose

+ H82e1

1 1 1
” f ”0,Qf ” ”0,Qf fN 0 ~ llo, 9

{25
1
+a(0rE2,81E2)* = O(h* + (402, (4.7)
then, there exists amindependent constaft > 0 such that

~ — A 2 —
101(p = Pl qizpy + IV = Pllgez + |0 =D)L o
ar(c—1)| div(g - 1m)] < CIh* + (A2, (4.8
+H f(g *) L”(Lz(Qs))Jr Iv(g *) Loo(L2(£2¢)) "+ (407, (48)
where

1 1
fl- = max | f'"*2x, fl- — max | f"7x.
Il oo (x) e I l (AR 1<|<J|| I

Proof. Since the proof is analogous to that of Theorem 2, in the following we shall only
highlight the steps which are different. First notice thglt, u", o) satisfies

S

1 .
(@azpmr;’ Qh> + (V™2 E, Van) o, + o1 (82u”+%, div Xh)
0 ~ ~
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1 1
+ of ((,0545) 3cgn+? Ns, XNhns>F

S

1
+ pfa(320”+%, Xh) + <—8c Dn+%,Qh>
~ ~ C T

N\H

= (@ et e ),
f
+pf<3c/3 div X%) +,0fa(ac)/ Xh) +pf<8cé", X%hns>F (4.9)
(’Osazgn’ %)Qs B (divz e %)QS - (gfnyz + I/fn’ %)QS’ (4.10)

for any (gh, vh, xh) € W, where

1
n, z 1 1
n 32P”—ptt“, ﬁn afun_utn+2’ J/n 8f0n—0tn+2,
1 ~

n,z n,
8“=8cp”—pt 4’ I)0n=329‘n_un

It follows from Taylor’s formula that

Bl

the1

2 3
< C(Ab) /
0,25 tho1

2 th+1
n < CcA) /
0,2 tho1
th+1
< C(At)? /
tho1

,Bn

~

2
Uttt (U”O o dt,
~ s S

N2 g [t 2
o3 o, < C(Ab) /t I I3 g t, |
n—-1
2 thea
8], | <can? f
-3 th—1
2
712, 1, <@ [ I g et [y
th—1

~ 110,02¢
n+1
< C(A)3 /
r th-1

Setr" = p"—P", " =u"-U", E“—o —H” From (4.5)—(4.6) and (4.9)—(4.10) we

~

2
ottt (1) Ho 0 dt
~ ,dds

2
Uttt(t)Ho 0 dt

,Bn

2
st

2

vl

_1
~ 3

get for any(gh, vn, Xh) e wh

1 .
(gazr n+3, Qh) + (VI Vap) o, + pi <823”+%, div Xh)
I3 ~

S

1 -1
+ pfa<82§n+%, Xh) + <Eacr n+%’ Qh> + /Of<(ps~«45) 3cgn+%nsy thS>F

I's S
1 1 1 1
= (@""2, gn) gy +<—5”+2, Qh> +<pf¢”+? ‘Ns, qh>
C I ¢ r
+ ot (8" divn) | +pra(dey™ xn) + o1 (38" xans) . (412)
~ ~/ (2 A ~ &
(,osazgn, vh)Q - (div En’%, vh)n = (1// vh>Q (4.12)
~ 7/ {45 ~/ §s ~ 3

Applying the operatof s to (4.12) yields

B (div a°5n+%’ vf)n

(os010%€", un) = (") - (4.13)

S
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For any(g", ", ") € W", set(ah, vh, xn) in (4.11) and (4.13) as follows:

~

1 P 1 1 AN L 1
Oh = 80" 2 + 8™ E — acp™E, = pr (02672 4 920™ 7 — p7untd),

1 1
= AN+5 =
= 3cE™2 + 31" —8ca""2,

ze><

and we obtain that

2 2

1
—8fl’n+%

1
2At C

1 1
Zo5r"2
Cc

n+1,% 2 n 2
Ve a3 o — | vrha)3
0,2¢

+ o I:”«/—Psp 922, — | vpsproZe H ]
S

N R CESRES))

0,2¢

2 -1 1 1
R o) i i,
1 1 Lt l 1 11 el 1
=— (@32rn+2, 3C(q”+2 - pn+2)> —(Vr"t23, Vac(anrz - pn+2)).Qf
2%

—pf<32e”+%,divac<;2”+? —on+%))9 —pfa(azEn+2 dc ( n+3 —an+%)>9
~ ~ ~ ~ s

1 1
~pr(patrien (57 ) = (et - o)
f
. 1 An+d 1 .
—pf(dIVBCE”J“Z, 82(En+2 n+2>) + (an+2 Qh)ﬁf + pf (acﬂn,dN)g])Q
1

-1
- /0f<</05-/45) 8CEn+%ns, 3(:()?%é - 0n+7)ns>F + /Ofa(acl/n, Xh)
~ ~ Y s ~ o~

o

S

1 1 1
+<—6”+2,qh> +<pfw”+2-ns,qh> +pf<acﬂ”,)<hns> +pf(8fw“,vh)
C I ~ r ~ ~ I ~ ~/

S

1 1 ntd 1 1
< - <?azr”+z, (@7 — p”+2)) FIVrRAZ o 4 Vae@™tE - pE)|2,
¢

O_I’H‘%)) pfa<82En+2 a ( n+2 _Gn-ﬁ—%))
02 ~ x s

—,Of(B ents div 9¢ ( n+3 -0
2

~

1 1
_ 2 n+i n+l n+i
,Of( 50§ 0 e ,0 ( 2) +5H—\/63cr 2

),
— pr (divacE™ 2, 92(8"7 — ”+%))QS+C(6)||80(G“+% — )2,

+5<(PSAS) 3cE +2ns acEn Ns r
~ s

1

=+ C(8)<(p343> 8(:( n+2 — gn—‘r%)ns, a(;()%n-‘r? —_ gn+%)nS>F
~ ~ ~ ~ s
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n+3,2 ny2 n2
+C (1™ 213 g, + 13613, + cy™ 13
1.2 1 2 2 2
+Hw+ﬂL;F +me7~nﬂ_;F+H%ﬂWL;F+4WfWWbQ
2.4 f ~ 2 ~ 2 ~ oS

1 1 1 1 1 1
n+5 AN+ 5 n+5112 n+5 ~N+5 n+5\2
+136r™E 44T - p 2 ) 4 ||8c(§ SIS S +z>||ms

~
~
o

+ 192€™F 4 06 (572 — UM )12 1, + 13E™ EnslZ g ). (4.14)
From (2.14), (4.3) and (4.13) we obtain that

1 1 . 1 n+l 1
— ps (psafaze”, az(ﬁr”“? - u”*?))Q — ps (dlvacE”+?, 82< Ntz _ u”+2>)Q
~ ~ ~ s

~ ~ ~
S

1 1 1
= pf (8f (thg’4 —get + lﬂ"), 82<f)n+§ — UM%))

25

= o1 (sc( @S2 —gf"2) +apyn a2 — ) L (a15)

~

c n: ni2
<C(|one* - o
X thi gSN 0.9

+ Haze"

~

) 12
Hdlv EN4
~ oo

29) (4.16)

Applying At Z|n=1 (I < J —1) to both sides of (4.14) with sufficiently small,

2

14+3 12 1+1,7 12 2gl+1
10¢r' 213 o, + 19T AB o + | yasproZe |
s 4S

|
+a(0rEF8, 00 EE) + ALY [10er™ 218 1, + | (BE™ Eng)
~ ~ 1 " ~

n=

"
0,15

|
1 1 Antd 1 11
<CAtY [— <?82r”+?, 0c(@""2 — p”*Z)) + VIt ag o,
n=1 §21

1 1 1. An+i 1
+ ||V8c(qn+§ — pn"‘é)”_zof — Pt (aze”+2, dIVSC(XrH'Z —orn"'z))Q
~ ~ S

_ pfa<32§n+%’ ac()zn-ﬁ-% _gn-i-%))
1 1 1
e (ac(Qh92+2 - g2+2) TPV 32(13’“'2 _ un+%))Q
~ ~ ~ ~ ~ s
1 1 -1 1 1
+ 0@z — ™) |15, + <(,05AS) 9cE™ 2N, 3E"2 ns>

S

e T EW L (o Pl
0.021 2 lloos % llo,os
1 1 2 2 2
e i P L N e [ P 20
l ||—%,Ff ‘f S 7%,F cé 7%’]1 fTE 0,(25)
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1 1 1 2
8c<En+§ +)’€n+§ _O.nJr?)H
~ L ~ 1,06

2
0,{2s

01E2,9(E?). (4.17)

1 el 1
+19e(r™2 + 4" — p™ Ry T, +

1 a1 1\ |12
_’_Hazen+2 +—8C(vn+2 __un+2)H n
~ ~ ~ 0,82

2
82e1H a(
pspfoe 0.0, +

1
8CEH+§ Ns

+lasr2)2 o + VIR, +
f 0,02¢ 0,02%

Using summation by parts we get

[
1 1 el 1

Aty (gazr”*z, dc(g™2 — p”*Z))g
f

n=1
1 1 1 1 At _1 n_l _1
— 50112, 862 = p))g, — 5 D" 2, 018" 2 — P ),
n=1

1 1 N 1
= g(afr”z, (G2 — p'ta)) g,

1 A4l 1 1 1 .1 1
<8191 20G o +C@) 1862 — P o — 5 @177, 0Q2 — P2

At [ _1 I N1 1
+Z [Z; 19¢r" 215 o, + > 004" 2 — p”*z)ﬂ%zf} ., (418
n=

n=1

|
1
At pr (329n+%’ divac()zn—i_? _ gn+%)>9

n=1
2

0,02

1
— pf (Bf e%, diV3C<)A(2 — 0%))
~ ~ ~ 2

I+3 I+§)’

+C(8)Hdivac<

R >=>

gs”afe“r%

1112
e Sl 1,
n=1 s

(4.19)

|
1 1 1
At pra(a25n+§’ ac<)’€n+2 _ gn+§>)
n=1 ~
2

2 1 1
colu(z -
o,(zsjL (8)] % £ g 0,0

|
1
MGEDI | LI WS UL Casb LA B
n=1 s ~

NI

1
)
~ s

], (4.20)

+pfa(3f5%,3c(

R>:>

<oforg?

‘ 2
0.

I 1 1
n+s n+3 ntl 1
At ) ps (8C(ths 2 —0s 2) +oryn, 32(3“2 - g"“))Q
n=1 ~ ~ ~ s

|

|

' 2 1 142
< Sl + et -
Pf nZz(:) f‘f 0,(25+ c thsN gsw 0.0
2
+ Haz(ﬁ“% i) | (4.21)
~ ~ 0.9
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Finally, the desired estimate (4.8) follows from (4.14)—(4.21), (3.1)—(3.5) and applying
the discrete Gronwall inequality. O

The above theorem imposes a strong constraint on the starting values of the fully
discrete scheme. In particular, it requires information about the second iterates of the errors
r2, e2 and E2 To weaken the constraint, we have to estimate the errors in weaker norms.

Th|s can be done by utilizing the idea used in the proof of Lemma 1 (see item (b) of the
remark following the proof of Theorem 2).
Our second main theorem of this section is the following one.

THEOREM4 Suppose that the starting values of the fully discrete method satisfy

1
19170000, + I 2o, + |2r€”  +a(E% EY)* =0tk +av?).  @4.22)
LA

Then, there exists dmindependent constaft > 0 such that

P 220y + IVR Lz + 01 €|

l<I<J 1{ L2(2s)

+ | <CIh* 4+ (Av2,  (4.23)

Lz(f?s)}

where
RO:=0, R := AtZr“’% forl > 1

Proof. The proof is similar to that of Theorem 3, hence we only highlight the main
differences. In particular, we pay attention to the dependence on the starting values.
First, the error equations for the scheme (4.1)—(4.4) are given by

1 1 1
(—zazr”, qh) + (Vr™4, Van) o, + <—8cr”, qh> - <,0f 92" - ns, qh>
(o 2% Cc ~ r

I’y

1
= (an’ Qh)Qf +<Ean’ Qh>F +<pf1£n : nSv Qh>F’ (424)
f

+ <(P5As> En+? Ns, ths>F

S

a<3f E", Xh) + (afgn, diVXh)Q

S

~{ore"rome] =y ) + (87 dvn) , {87 rome] (425

(ps7€"n) = (W EMEm) = (47 ), 426)

S

for any (gn, vn, xn) € WP. Note that (4.11) is obtained as a combination of (4.24) and

(4.25) after applying the operatpb, to (4.25), which is equivalent to taking the derivative
int.
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Instead of differentiating (4.25) ity here we take summatiodt > ; (m > 1) on
(4.24), which is equivalent to integrating the equation,iand yields
1 m 1 1
= VR™ Vv “rmte - m.
(Czﬁfr ,Qh)Qf +( » V) o5 +<Cr ,Qh>Ff <pf8f§ Ns, Qh>F

1 11
=8M+ ( =a¢r9, “rz, 3r e - ng, . (4.27
T+ (C2 f Qh)m +<C qh>ﬂ +<Pf € Ns Qh>F (4.27)

where
+ <pf1/N/” ‘N, Qh>F:| -

m

SPi= Aty

n 1 n
((X 7qh).Qf + = ,Qh
n=1 ¢ I’
Now, averaging (4.25) and (4.27)ratandm — 1, respectively, and adding the resulting
equations we get
1 1
<—23frm_%,Qh) + (VR™Z, Vah) o, +<—rm"l‘,Qh> +pfa<8f EM-2, Xh)
Cc ~ ~
.Qf I't
-1 1
m, 5
E 4Ng, )g1ns>r

S

1
+ e 2, div + A
,Of( fe )g1>gs pf<<,05 %s)
Sm%+8m%+<18r°q) +< r%q> +<p8e°nq>
= —>0f > Uh - > Uh fof - s, Yh l
1 2 c? o \C I ~ r
(4.28)

where
S = pfa(ym, Xh) + pt (ﬁm, diVXh>Q + Pf<f3mv ths> :
~ ~ ~ ~ S ~ ~

Forany(@", 0", x") € W", set(an, vh, xn) in (4.26) and (4.28) as follows:

Gh =™ +™E—p™E = pr(9r€™E 40702 —apu™?),
= EM g™,
and adwd the resultin~g equations to get
+ Z—Zt[umafemnéﬂs - Hmafgmfluzﬂs]
+om[a(Em ) —a(em e )
m'%n5>rs

+ Pf<(Ps~As) Em’z‘ns, E
0,1t ~ ~ ~
mi pm’i) — (VR™ 2, vq

¢

1 1

+ | —=r™a
|7

1 1,

:‘<@“““4q

1 1
m, 1 m, 2
4—=p 4)Qf
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(4.29)

Here we have used the identities

1 _1 drem—grem1
m+ m f f
rmrz 4 rM=2 52 _ _~ ~

2 ’ ~ 2

It follows from the error equation (4.25) with= 0 and (4.22) that

1
of RM1_ymz _

a(EL EY) < Clh*+ (4p?,

hence

a(E2, E?) < CIn + (407,
and all starting errors appearing in (4.29) are 0hO+ (At)2). Since the remaining proof
is the same as that of Theorem 3, we omit it. O

REMARK 4 Seeral choices ofP?, P1,U% U and I7° which satisfy the constraint

(4.22), are known in the literature: see Cowsteal. (1996), Dupont (1973), Feng (1998)
and Santost al. (1988) for detailed discussions.

5. Concluding notes

We make two comments about the heterogeneous finite element methods introduced in the
previous sections. First, we comment on the construction of the finite element\&jace
Second, we propose some parallelizable iterative solution methods for effectively solving
the finite element systems (4.1)—(4.4).

5.1 Construction of WN
Werecall that the space/" is defined as

wh = {(Qh, oh, fh) e PR x VI x HY; ns — ghnt = 0 pointwise onF}.

Notice that the constraint in the above definition is exactly the interface condition (2.4).
Because this condition is assential boundary condition for the stress tensgiit cannot
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be absorbed into the mixed weak formulation (2.12)—(2.16). Although it can be imposed
weakly in one way or another, in this paper we choose to (strongly) build it into the finite
element spaces because (i) it can be easily satisfied by the finite element Bbeamk

Hsh used in this paper; (i) it allows us to avoid some technicalities and simplifies the error

aFlaIysis. In the following we shall explain (i) briefly.
From Arnoldet al. (1984) we know that for any ‘triangleK € 7n|p, afunctionty €

Hsh is a piecewise polynomial of degr&gk > 1) on K andtynk is continuous across the
bBundaryaK of the triangleK. Hence,thnk |k is defined uniquely and its components

are polynomials of degrele on each edge oK, in particular, on the edge = 9K N I

if meagdK N I') > 0. Now letK’ € 7n|p, be the ‘triangle’ which shares the edge
e = 0K N I" with the triangleK e 7n| . Foranygs PP, this is a polynomial of degree
k on K’ and is continuous across its boundary’. Clearly, g, is also a polynomial of
degreek one = 9K N I" = 9K’ N I". Hence, for each X i < N, if the nodal parameters
of (zthnk)i (which are indeed used as the degrees of freedom, see p. 15 of Atrald

1984) and the nodal parameters(gfn); are chosen to be same on each eege I,
then we havenns — ghns = 0 one, therefore, on the wholé&'.

5.2 Domain decomposition algorithms

Due to the heterogeneous nature of the fluid—solid interaction problem, it seems that
the only practical way for solving the fully discrete finite element system (4.1)—(4.4) is
to decouple the problem on the interface and to solve it in the fluid and solid regions
separately (in parallel). Such an approach is known as the domain decomposition (divide-
and-conquer) approach. Clearly, the crux of the approach is how to do the decoupling and
how to piece the subdomain solutions together to get a good whole domain solution. In
this section, we propose some domain decomposition algorithms to meet the goal. The
algorithms to be introduced are adapted versions of those developed in Feng (2000) for
the standard Galerkin approximations of the same fluid—solid interaction problem. For the
sake of clarity, we shall present the algorithms at the differential level. Furthermore, no
convergence analysis for the proposed algorithms will be given here since a similar analysis
can be found in Feng (2000, 1998).

First, from Feng (2000) we know that the interface conditions (2.3) and (2.4) can be
equivalently formulated as

0
P +ap; = pfUgt - Ng — ao(ut)ns -ng onI' x (0, T), (5.2)
ons ~ ~
ap
ﬂU(Ut)ns'ns-l-prtt-ns=—ﬁpt+— onl'x (0, T), (5.2)
~\ ~ ~ anf
a(ut)ns 7s=0 onl'x 0,T), (5.3)

for any pair of constantg andg such thatw| + |8] # 0 anda + 8 # 0 whenaf # 0O,
wheretg stands for the unit tangent vector &rs.
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We remark that to ensure the convergence of the domain decomposition algorithms to
be given next, we need to restrict>= 0 andg > 0. However, how to choose andg and
what are the best choices of them remain as open problems.

Based on the above new interface conditions, we propose the following two iterative
algorithms. The first resembles the block-Jacobi-type iteration and the second resembles
the block Gauss—Seidel-type iteration.

Algorithm 1
Step 1.¥(p°, u, 0 € Pt x Vs x Hs.

Step 2. Generatéd(p’, ul, o 1)}j>1 iteratively by solving

1 , .
2Pt - AP =g in 2¢ x (0, T), (5.4)
1 op
-l + % —0 onl x (0,T), (5.5)
8pJ j -1 j—1
aT"'apt —,Ofutt ns—aaj Ns - Ng onl' x (O,T), (56)
psuy —divel = gs in O x (0, T), (5.7)
1 :
5o —ystr< )—e(ul) —0 in 25 x (0, T), (5.8)
ns ™ A
psAsul +ang=0 onTs x (0, T), (5.9)
. . . ) j—1
poins - ns+ prul - ns=—ppl 1+ 2 —onI' x O.T),  (5.10)
~ ~ f
oting-ts =0 onl x (0, T). (5.11)
Algorithm 2
Sep1.vp° e Ps.

Step 2. Generatéd(p’, ul, o 1)}j g iteratively by solving

psuly —divol = gs in Qs x (0,T), (5.12)
1 .

gy I _ 1) — i
522 ystr( ) g(g ) —0 in s x (0, T), (5.13)
psAsu{ +olng =0 onls x (0, T), (5.14)

i op!

,BUt Ns - ns+,0futt Ns = —,3pt + an fonF x (0, T), (5.15)
oting -7 =0 onI’ x (0, T); (5.16)

1 - .
Spit - Apitl = g in 2 x (0,T), (5.17)

C
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1 apitt
Y R R onls x (0, T 5.18
c any £ x(0,T), (5.18)
3pj+l i1 . )
WJraptj =ptUy-Ns—aot)ns-ns onl x (0, T). (5.19)
f ~ P~

REMARK 5 Appropriate initial conditions must be provided in the above algorithms. We
omit these conditions for notation brevity. We also point out that the supergchipthe
above algorithms stands for thh iteration, while it was also used in Section 4 to indicate
the function value at time steip. We assume no ambiguity will be caused by the notation
abuse.

Algorithms 1 and 2 require evaluation of the normal derivative of the previous iterates
of pon the interfacd". To awid the inconvenience and possible loss of accuracy at discrete
level, we propose the following modification to the algorithms by introducing a ‘Lagrange
multiplier’. Let

op

Gs=— — onrl.
s=—BP+ o

It is easy to check that
]

Based on (5.20) we replace (5.10) in Algorithm 1 by the following updates:

Bot'ns - ns+ prul -ns = GLt onI'x (0, T), (5.21)

G;:_(ajtﬁ)ptj +pfutjt~ns—acﬂjns-ns onl’ x (0, T), (5.22)

andSep 1 isreplaced by (G2, go, 00 € L%(I") x Vs x Hs. Clearly, (5.21) and (5.22) do

not involve explicit computation of the normal derivative pbn I". Instead, they require
one additional function update f@s. Since the modification for Algorithm 2 is similar,
we omit it.

We conclude with two remarks. First, using the energy method of Feng (1998, 2000),
it can be shown that the above algorithms all converge forOandg > 0 strongly in the
energy norm of the flow—solid interaction problem (see, Theorem 1). Second, to implement
the above algorithms on computers, one has to discretize them first. Different discretization
methods can be used in the fluid and solid subdomain. For example, the fully discrete mixed
finite element method developed in Section 4 can be employed to do the discretization.
After an approximate solution is generated at time siefgo compute an approximate
solution at the next time stejp, 1 using the algorithms, it is natural and efficient to use the
computed solution at the time stgpas the initial guess to start the algorithms.
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