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Numerical simulation of an unsaturated flow equation ~
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Abstract A numericd modd for an unsaturated flow problem by usng the finite ement method is established in
order to smulate liquid moisture flow in an unsaturated zone with homogeneous il and deep subsurface water , and
with different initid and boundary conditions. For irfiltration or evaporation problems, a traditiond method usudly
yiddsogtillatory non-physcs profiles. However , nonocillatory solutions are obtained and non-physcs olutions for
these problems are evaded by usng the masslumped finite dement method. Moreover , the kind of boundary condition
is handed very wel.

Keywords: unsaturated flow, finite dement, masslumping, numerical simulation.

Fuid movement in unsaturated il isthe flow where water is not full of hole, andisaninr
portant form of flow in porous media. Prediction of an unsaturated flow isprovided with sgnifi-
cance in many branches of science and engineering. These include atmospheric science, il -
ence, agricultura engineering, environment engineering , and groundwater hydrology. Soil mois
ture is an important climate factor , and its seasona change plays important influence on weather
and climate in mid-high latitude regions. L andsurface parameterization which stresses computa
tion of il moisture, is a popular problem[l’zl. Hydraulic processes at surface and subsurface,
such as precipitation , evaporation , and evaporotrangiration , seepage of surface water , and cgpil-
lary elevation of deep-level water , absorption in root zone and liquid moisture flow of groundwer
ter , al can be reduced to unsaturated flow problems® 1. The numerica lutionsfor the finite
difference method are very sendtive to infiltration or evgporation boundary conditions and il pa
rameters. The kind of boundary condition is handled very well through reducing to caculation of
known flux by usng variation. It isextremely possble to yield non-physcsoscillatory infiltration
or evgporation profiles by usng the traditiona finite dement method. We obtain nonoscillatory
lutions and evade otillatory nornrphysics profiles by usng the masslumped finite element
method. It can be used in dmulation of liquid moisture flow for irfiltration, evgporation, evapo-
trangiration, re-digtribution, and their alternate gopearances.

1 A numerical mode of onedimensional unsaturated flow

1.1 \Vertica infiltration and evgporation problems

Based on horizonta resolving power of A GCM (1 —5 longitude-latitude) , liquid moisture flow
in il along horizonta direction may be ignored. We condder one-dimensona unsaturated prob-
lems Water head has different tempora-gatia distributions. Let z denote the verticd

* Project supported by the Nationa Key Project of Fundamenta Research® Climate Dynamics and Climate Prediction Theory”
and China Postdoctora Science Foundation.

© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



430 SCIENCE IN CHINA (Series D) Vol. 41

dimendon, assumed postive downward, and h(z,t) be water head at time t and at the distance
z from surface. We suppose that the infiltration or evgporation rate at surface dependent on time
isgiven, herethat ispogtivefor infiltration and negative for evaporation ; groundwater lay hidden
in the earth desply , and does not reach the domainQ = (0, L) ; water head or il moisture at the
bottom of the domain Q is given dependent on time. Then by the Darcy law and the continuous
principle, we obtain the following unsaturated flow Richard equation:

2 an |, 2K(h) _
R TR E R A (1.3

where C(h) =@/ 0h[1/ L] isthe Pecific moisture capacity ;0 [ L% L3], il moisture; h[L],
water head; K(h)[LT '], the unsaturated hydraulic conductivity ; S¢[ (I et 3] , aborp-
tion rate of root zone!*®!. The presumed condition is asfollows:

(i) initia condition: h(z,0) = ho(2);

(i) lower boundary condition: h(L ,t) =B (1) :

(iii) upper boundary condition has the following cases:

Infiltration:

(a) If the known surface flux did not exceed the infiltration intendty , and did not generate
runoff |

K(h) - K(h)%gz q(t), when z = 0,

which is the seoond kind of boundary condition.
(b) If the known surface flux did not exceed the infiltration intensity until runoff had gener-
ated,

K(h) - K(h)g‘g:q(t), when z =0;and t, > t >0

h(0,t) =0, when t = tg,
where t, was the beginning time when it exceeded the infiltration strength , and was taken as the
beginning time of h(0,t) =0 snce h<O.
(c) If surface kept wet or thin-level water, h(0,t) =0.
Evaporation:
(a) If =il at surface was evaporated at evaporation rate q(t) ,

K(m - k(W= q(n,az=o0,

where q(t) <0.

(b) If =il at surface was evaporated at a high intensty and il moisture at surface became
the air-dried rate® 4in a short time, h(0,t) = hq.

(c) If =il at surface was evaporated at evaporation rate q(t) , and il moisture at surface
reached the air-dried rate after time t,,

K(h) - K(h)%g = q(t) ,when z =0,and t, > t > 0;

h(0,t) = hg, when z = 0, and t > ta;

here t, was the beginning time when that reached the air-dried rate, and was taken as the begin-
ning timeof h= hgdnce h= hy.
Re-distribution:

© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



No. 4 NUMERICAL SIMULATION OF UNSATURATED FLOW EQUATION 431

If surface flux was zero ,

K(h) - K(h)%’i:o, when z=0and t, >t >0,

which is the seoond kind of boundary condition.

According to the presumed conditions, we can lve the basc equation and obtain the water
head distribution for vertical infiltration, evgporation, evaportransiration, re-distribution, and
their aternative appearances. And then the il moisture digtribution followsfrom the construc
tion relation of h and® .

As an example we consder eq. (1.1) with theinitid condition and the low boundary condi-
tion mentioned above , and with theinfiltration or evgporation upper boundary conditions, and ex-
plain numerical s mulation processes of the modd.

Let HE(Q) ={v H"(Q),v(L) =0}, here H (Q) is a Soholev pace, up to the first
derivatives of which are square integrable!™® on Q. Set h(z,t) = h(z,t) +B (), and homoge-
nize the lower boundary condition. Then the equivalent variational formulation of the conddered
problem(on t (0, T)) isasfollows:

tofind h(z,t) HE(Q),Vt (0,T), sichthat V¢ HE:(Q),

'h h L
[C(h)%?:% +[C(h)%g,2_j = b6 +IO K(h) %)dz+ (S, - [C(h)git,% ,

(1.2
where and from now on (- ,-) denotesthe L *inner product on Q!

1.2 Finite ement approxi mations

1.2.1 Semi-discretefinite eement approxi mation. Wefirg introduce finite e ement goprox-
imation in goace direction. Divide the domainQ = (0,L) suchthat 0= xg< X1 < X2< < Xp+1
=L, where xpand x,+1are the boundary pointsof domanQ. Let & = (x;, xj+1) (i=0, ,n)
be n+1 eements. Define afinite element pace Vi, C HE(Q) such that Vi ={ vy is continuous
in[0,1],vy & islinear polynomia for 0<i < nand vh(L) =0}.

Let { 4} C V4, be the finite dement basc functions™!, & (x;) =8, (i,j=0, ,n+1).
Since h Vi, h(z,t) = zinzoxi(t) @ (x) +B(t). Therefore, the matrix formulation of
semidiscrete finite eement gpproxi mation of the problem(1.2) may be written as

[Alx + 18] 20 = (7,
{X(0)} = (ho(x0) - B(0), ho(xn) -PB(0))T, (1.3
where

L dd de
[A] = [ Ayl Aj :IO K(h) d_Zld_ZLdZ’

L
[B] = [Bj],Bj :Io c(h) #4dz,

L dd
(P = [R1LF= a(h b+ (s - [ K0 g dz, (14

{X} = (Xo(), ,Xa(0)",

dxt | dXe  dXq ..
{dt}_[dt’ 'dtJ =00
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Eg. (1.3) definesa et of ordinary differentia equations with nonlinear coefficients. To get a nu-
merical olution of the problem , discretization for time variable should be introduced.

1.2.2 A full discrete scheme. A finite difference scheme may be introduced to goproxi mate
the time derivativesin the matrix eguation, and then the Galerkin finite eement-finite difference
scheme of problem (1.2) isobtained. Definefor that purpose the following approxi mations:

dxi_ £t 1yt
dt At ' (1.5)

{ x}t+At12: (A){ x}t+At + (1 _ (A)){ X}t,
whereA t is the time step and W a tempora weighting coefficient. By defining matrix equation
(1.3) at the haf-timelevel (t +A t/2) , and introducing approximationsin (1.5) , thefollowing
algebraic equation system yields

a2 {0 )t

[A1" 2@ X} ™+ (1- @){ X} + [B] At = (R
And then
[P]HAUZ{ X}1+At - [Q]I+At/2{ X}[+{ F}HAUZ, (1.6)
where
[P] = w[A] +35IB],
(1.7)
1

[Q] = (@- D[A] +5:[B].

When w =1 an implicit in time finite difference scheme results, even through the various coeffi-
cients are evaluated at the hadf-time level. When w =1/2, on the other hand, a timecentred,
Crank-Nicol oon type agorithmisobtained. To be able to :lve eq. (1.6) , one needs estimates of
the coefficients K and C and then coefficient matrix [ A],[B],[ Flineq. (1.4) and[ P],[ Q]
ineg. (1.6) at the haf-timelevel. Snce the masslumped finite ement method is used in comr
putation, and al elementsin each row are summed Up into the main-diagona eement , ocillatory
non-physcs profiles are evaded. Because elementsof these matrix depend on the water head , it is
necessary to have an estimate of the water head distribution h at the haf-time level. For each new
time step this distribution isobtained through linear extragpolation from theold distributions asfol-
lows:

At
e A LN (1.8

whereA t, andA t, are new and old time increments, repectively. Expresson (1.5) isa kind of
approximations, which may be improved by meansof pre-estimate and correct iteration processes.
During each iteration the most recent distributionof hy™ !, obtained by solving eq. (1.6) , is used
to obtain a new estimate for the haf-time level : h'™ V2= (hy™ '+ h')/2. By uing h'"™ Y2 a
new water head hi™! may be obtained by slving eq. (1.6) . Theiterative process continues until
a satifactory degree of convergence isobtained. The criterion of convergence, inits most genera
form,isgiven by: | hi™'- hy™ ! <py+H o ™Y , where k represents the iteration number ,
and M 1, U, are the selected abslute and relative error criteria.

To compute water head distribution at a new time leve , thefirst step isto estimate h' w2
water head distribution at the half-time step. If the time level is not the first one, it can be
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pre-estimated through linear extrgpolation according to (1.8). However , if the time leve is the
first one, it cannot do 0 sinceonly initia distributionis known. Inthiscase, theinitia distribu
tion may be taken as the pre-estimated distribution at the first haf time leve.

2  Numerical simulation

A seriesof infiltration experiments were done in the laboratory usng a plexiglass columnt”!
93.5cm long and 6-cm indde diameter (ID) uniformly packed with sand to a bulk dendty of
1.66 g/ cm®. The column was equipped with tensometers at depthsof 7, 22, 37, 52, 67, and
82 cm below the il surface. Each tensometer had itsown pressure transducer. The changes of
water content at different depths were obtained by Gamma ray attenuation. A constant water
head was maintained at the lower end of the column and a constant flux (13.96 cm/ h) wasinr
posed at the sil surface (z=0) during 0.7 h sSnce beginning of irfiltration. Assume that ater
0.7 h evaporation began at the evaporation rate 4mm/ h; and when il moisture at surface
reached the air-dried rate, h(0,t) = - 61.5 cm. The hydraulic conductivity-the water content
relationship of the il wasobtained by analydsof the water-content and water head profiles dur-
ing trandent flow!® 1. The il-water head-water content relationship was obtained at each ten
someter depth by correating tensoments readings and water-content measurements during the
experi ments”!. The followi ng analytica expressonsobtained by aleast squarefit through al data
points were chosen for characterizing this il :

K(h) = KSA_HAh_ly, Ke=34cm/h, A =1.17x10°y = 4.74:
a@®.-06
0 (h) :aJ:TTﬁ‘lJ'e“ 0;=0.287,0, = 0.0750a = 1.611 x 10° B = 3.96;

(2.1)
where dimendon of hiscm, subscript srefersto saturation, i.e. the vaueof © for which h=0,
and the subscript r to resdua water content (see refs. [7,9]). Theinitid and boundary condi-
tionsfor irfiltration of water in the sand were

h(0,z) =- 61.5cm (or®, = 0.10cm*cm® ,z  [0,70];

a(t.0) :{13.69cm/h,when 0<t<0.7h, (2.2)
g=-0.4cm/h, whent > 0.7 h,

h(70,t) =- 61.5cm.

Divide the domain Q = (0,70) into 70 elements. The time stepA t =5s. Those data werein-
cluded into the program. The obtained il moisture profilesfrom 0 to 0. 7 h, are presented in
fig. 1. Here the ordinate denotes il moisture, abscissa denotes depth from surface, and each
curve denotes a il moisture profile at certain time. By comparing the il moisture profilesinfig.
1 with those of experiments done in ref. [7] , we can find that the results are coincident. There
are no o<tillatory non-physcs profiles for the monotone infiltration problem.

Figure 2 presentsinfiltration profiles at theinitiad stage (from 0.0 to 0. 1h) and at each 0. 1h
period aterwards. It may be seenfromfig. 2 that il moisture at surface increased from 0.1 to
0. 25 repidly during 0. 1h dnce infiltration occurring. After that timeit changed alittle and grad-
ually approached the saturated il moisture. When t >0.7 h, il at the surface was evaporated
at intendty 4 mm/ h,i.e. q=-4 mm/h. Fig. 3 presents il moisture profilesat 0.7 h and at
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Fig. 3. Irfiltration, evaporation, ar-drying for il at surface.

each 0.1 period aterwards. Fig. 3 shows that when evgporation began, il moisture at surface
decreased. Because of the gravity flow , the front of il moisture goproaching the lower boundary
moved forward. After 0.1 h sSnce beginning of eveporation, il moisture profiles decreased with
timeleves. Findly, il moisture at surface reached the air-dried rate 0. 1 at the 1 200th levd ,
i.e. about 1.67 h, and il moisture gproaching the lower boundary gradualy approximated to
the air-dried rate 0.1. This shows that the numericd modd smulated very wdll irfiltration,
evgporation , evagpotrangiration , re-distribution, and their aternate gopearances.
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We now discuss mass conservation. The balance error for the ith level is defined by BE(t')
= abs(1- MB(t)), where

nlogi 0 ‘ o |[Az - 0 A_z]}
{sriterone - lob-0d (4] (on o [%
S (- A Y
Fig. 4 presents the balance error dependent on time level. From thefigure, it may be seen that at

the initid stage, the balance error exceeded 9 %, and then decreased repidly. It decreased below
2% at 180th leve , below 1. 5% dater 260th level. Hence it has a good massoconservative

property.

MB(t) =

0.3
0. 0.
0. 0.
0. 5 0.
s 0. £ 0.
3 0. g 0.
: £
-7% 0. = 0.
x 0. 0.
0. 0.
0. 0.03
0 i | 1 i 1 L 0 ! 1 i 1
80 160 240 320 400 480 560 40 80 120 160 200
Time level Time level

Fg. 4. Baance error dependent on time leve.

Iteration number with time leve ispresentedinfig. 5, which showsthat iteration number at
initiad stage changed from 8, 5to 4, and kept 3 ater 80 timelevel. This showsthat the numeri-
ca modd is provided with good convergence and stahility , but that at initial stage iteration nunmr
ber was larger , which coincides with our scheme and may be explained in the following analyss.
In computation, the next level water head is pre-estimated through a linear extrgpolation of the
recent two-level water head , and then the correct iteration is done from the pre-estimated result.
In this case, the estimate of codficients about time variable isthe secondorder precison. Howev-
er, that at initial moment is the first-order precison in this case, the linear extrgpolation cannot
be done and the next level water head was pre-estimated through explicit extrgpolationi.e. usng
the known initia water head profile and the relative il parameter profile, and then correct itera
tion was done as the previous case. It is natural to need more iterationsin this case. It follows

10 10
9+ 9t
8 8t .
[ 7T
L g7l
E 6 g6
E 5 \ ;5
= 4f £ 4
e L A j{
2F 2F
Ir i+
O 3 } s 1 ! i I £ 0 1 | i e i 1
1020 30 40 50 60 70 80 90 80 160 240 320 400 480 560
Time level Time level

Fg. 5. Iteration number dependent on time leve.
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that the shorter the time step is, the better the pre-estimated effect will be.

3 Conclusionsand discussions

A numerica mode for the hrform unsaturated flow problem by udng the masslumped finite
eement method is established in order to dmulate liquid moisture flow in unsaturated zone with
homogeneous il and deep subsurface water , and under different initia and boundary conditions.
Infiltration and evaporation boundary conditions are handled through reducing to calculation of
known boundary flux by udng variation. It demonstrated an easy and good treatment. At each
new time step , the water head distribution is pre-estimated through linear extrapolation from the
old digtribution, and then is lved by the correct iteration, which can reduce iteration number.
Numerical results show that the model evades ostillatory non-phydcs lutions by usng the mass
lumped finite ement method, and can be used in numerical s mulation of liquid moisture flow for
infiltration, evgporation, evgpotrangiration, re-distribution, and their alternate gopearances,
and that the scheme possesses a good mass conservative property , convergence and stability of pre-
estimation and iterative correction. Numerical smulation of the unsaturated flow problem has a
sgnificance in improving caculation of il water flow and il temperature in land parameteriza
tion, and working in efect on the ource of groundwater caused by climate change. Convergence
and error analysisof the masslumped finite eement gpproximation scheme will be discussed in arr
other paper. Numerica dmulation of saturated nonsaturated problems with shallow subsurface,
egecialy subsurface problem , will be studied further.
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