
JOURNAL OF METEOROLOGICAL RESEARCH 

1 

 

Citation: Mahmood, T., Z. H. Xie, B. H. Jia, et al., 2019: A soil moisture data 1 

assimilation system for Pakistan using PODEn4DVar and the community land 2 

model version 4.5. J. Meteor. Res., 33 (6), XXẊXXX, doi: 10.1007/s13351-3 
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ABSTRACT 29 
 30 

Soil moisture is an important state variable for land-atmosphere interactions. It is a 31 

vital land surface variable for research on hydrology, agriculture, climate, and drought 32 

monitoring.  In current study, a soil moisture data assimilation framework has been 33 

developed using the Community Land Model version 4.5 and the PODEn4DVar 34 

algorithm. Assimilation experiments were conducted at four agricultural sites in Pakistan 35 

by assimilating in-situ soil moisture observations. The results showed that it was a 36 

reliable system. To quantify further the feasibility of the data assimilation (DA) system, 37 

soil moisture observations from the top four soil-depths (0ï5 cm, 5ï10 cm, 10ï20 cm, 38 

and 20ï30 cm) were assimilated. The evaluation results indicated that the DA system 39 

improved soil moisture estimation. In addition, updating the soil moisture in the upper 40 

soil layers of CLM4.5 could improve soil moisture estimation in deeper soil layers (layer 41 

7, L7~62.0 cm and layer 8, L8~103.8 cm). To further evaluate the DA system, observing 42 

system simulation experiments (OSSEs) were designed for Pakistan by assimilating daily 43 

observations. These idealized experiments produced statistical results that had higher 44 

correlation coefficients, reduced root mean square errors, and lower biases for 45 

assimilation, which showed that the DA system is reliable and improved soil moisture 46 

estimation in Pakistan. 47 

Key words: PODEn4DVar, CLM4.5, data assimilation, soil moisture, Pakistan 48 

  49 
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1. Introduction  50 

Soil moisture is an important land surface variable for climatological, 51 

hydrological, ecological, and biological studies and has a central role in land-atmosphere 52 

interactions. Koster et al.(2004) investigated that the soil moisture anomalies represent 53 

significant impacts on regional precipitation after undertaking elaborately designed 54 

numerical experiments. The land receives about 65 percent of the precipitation derived 55 

from  evaporation over land, which is strongly linked to soil moisture (Chahine, 1992). 56 

Accurate and precise information of soil moisture at both the spatial and temporal 57 

scales is vitally important when attempting to improve weather forecasts, climatic studies 58 

and for drought monitoring (Dai et al., 2004). However, the low number of soil moisture 59 

field measurements over land is a big barrier in acquiring the soil moisture knowledge on 60 

broad scales (Robock et al., 2000; Robinson et al., 2008; Crow et al., 2012; Zreda et al., 61 

2012).To improve the soil moisture information, several efforts have been taken place 62 

without assimilating soil moisture observational data e.g. the North America Land Data 63 

Assimilation System (NLDAS) (Mitchell et al., 2004), the Global Land Data 64 

Assimilation System (GLDAS) (http://ldas.gsfc.nasa.gov), the Global Soil Wetness 65 

Project (http://grads.iges.org/gswp/)  (Dirmeyer et al., 1999)  and others (Qian et al., 2006; 66 

Sheffield and Wood, 2008).  67 

Currently, regular and field observations, satellite observations, and hydrological 68 

modelling are the main sources used to acquire soil moisture information. Soil moisture 69 

information collected through field observations, which are of low temporal frequency 70 

and have few spatial points. As this information is on point based and therefore cannot 71 

showed the soil moisture spatial variations. These field and regular based soil moisture 72 

http://ldas.gsfc.nasa.gov/
http://grads.iges.org/gswp/
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have a great influence on the plants development, chemical activities of fertilizers and the 73 

generation of runoff and erosion. Therefore, it has significant impacts on agricultural and 74 

the environmental systems. The hydrological modelling is the other important source and 75 

the soil moisture simulations generated by hydrological models have good temporal 76 

frequency and spatial distributions. Though, the precision and accuracy of simulations is 77 

strongly linked to input data and model structure. Land data assimilation can provides the 78 

reasonable solution to all these issues.  It is a technical method that incorporates the 79 

physical process data produced by the land surface models (Houser et al., 1998). 80 

Recently, there has been progress on assimilation techniques, algorithm, and their 81 

applications for many fields like as land, marine, and atmospheric studies (Tian et al., 82 

2011; Zhang et al., 2012). Tian et al. (2011) proposed a hybrid assimilation technique 83 

known as ñProper orthogonal decomposition (POD)-based ensemble four-dimensional 84 

variational assimilation method (PODEn4DVar)ò. This assimilation algorithm contains 85 

the benefits of both variational and ensemble techniques and performed better than both 86 

4DVar and the EnKF methods under perfect and imperfect model cases. The 87 

computational cost is less when compared to the EnKF and therefore it can be reliably 88 

integrated into land data assimilation studies.   89 

Land models play a fundamental role in land data assimilation systems. The 90 

Community Land Model (CLM) (Oleson et al., 2004; Olsen et al., 2010),which is the 91 

land module of the Community Earth System Model (CESM) (Hurrell et al., 2013). Even 92 

with the scientific improvements in CLM, some studies have shown that when simulating 93 

the hydrological state variables, CLM4.0 is biased towards estimating soil moisture at the 94 

global and regional scales (Long et al., 2013; Cai et al., 2014). In another study, CLM4.5 95 
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is used to assimilate AMSR_E soil moisture data and overestimation has been observed 96 

in soil moisture simulation at most part of the study area (Liu and Mishra, 2017). The 97 

earlier versions of CLM have been used in land DA studies for the improvement of soil 98 

moisture estimation. For example,  CLM2.0 has been used as forecast operator in many 99 

land DA studies to improve estimation of soil moisture by assimilating in-situ soil 100 

moisture data (De Lannoy et al., 2007; Tian et al., 2008a; Zhang et al., 2012), and 101 

(Kumar et al., 2009) used synthetic observations. Shi et al. (2011) incorporated CLM3.0 102 

as a forecast model in the DA framework and assimilated satellite data for the simulation 103 

of soil moisture. In another study, Sun et al. (2015) employed CLM3.5 to assimilate the 104 

GRACE data using the PODEn4DVar assimilation technique. 105 

The aim of this study was to build an assimilation system using CLM4.5 with the 106 

PODEn4DVar algorithm to generate the improved and more accurate soil moisture 107 

estimation for Pakistan region as a case. Pakistan is now ranked among the top few in the 108 

list of environmentally vulnerable countries, and faces considerable human challenges 109 

because soil moisture changes have implications for health, agriculture, ecology, and 110 

water resources under climate change. In such a crucial scenario, reliable and more 111 

accurate information on atmospheric and hydrological parameters is needed so that more 112 

comprehensive research on weather and climate prediction, and hydrological and 113 

agricultural studies for the region can be undertaken. In this study, a new DA system was 114 

used to obtain preliminary analysis and evaluation results for farmlands across Pakistan 115 

through the assimilation of in-situ soil moisture observations. The evaluation experiments 116 

were conducted at four agricultural sites, which were representative of various agro-117 

climatic zones in Pakistan. This meant that the DA system has been verified under 118 
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different hydrological conditions. The second goal of this study was to see the effects on 119 

deeper soil moisture prediction when soil moisture was assimilated into the upper soil 120 

layers, were also investigated. 121 

 122 

 123 

2. Land data assimilation system for Pakistan 124 

 Land data assimilation system consists of forecast model, assimilation algorithm 125 

and observation operator.  In current study, PODEn4DVar was selected as assimilation 126 

algorithm whereas CLM4.5 was used as forecasting model. 127 

2.1 Land Surface Model CLM4.5 128 

The CLM4.5, a global land surface model developed by the National Center for 129 

Atmospheric Research United states of America (NCAR).It is attached with the 130 

Community Earth System Model version 1.2 (CESM1.2) as a land module. It contains 131 

several modifications over previous versions such as improved parameterizations to 132 

reduce biases in soil carbon, revised photosynthesis, and canopy radiation schemes 133 

(Oleson et al., 2013). 134 

In CLM4.5, land surface follows the subgrid hierarchy in which each grid cell 135 

consist of land units, columns, and plant functional types (PFTs). Grid cells may contain 136 

different numbers of land units, e.g. lake, glacier, vegetated and urban. The vegetated 137 

land units contain several columns, and each column has 15 layers for soil and five layers 138 

for snow, depending upon the snow depth. The soil moisture is calculated within top 10 139 

hydrologically activated layers. 140 

The volumetric soil moisture content is calculated by the following equation 141 
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  Ὁ Ὑ                                                                      (1) 142 

Where — volumetric soil moisture content in soil column, E is evaporation rate, q is 143 

vertical soil water flux, 2  is melting or freezing point and z is vertical distance from surface. 144 

2.2 POD-based ensemble four-dimensional variational assimilation method 145 

Tian et al. (2008b) suggested a hybrid assimilation method using ensemble and 146 

Proper Orthogonal Decomposition (POD) techniques in which the adjoint model is not 147 

needed. Tian et al. (2011) used this technique to develop the PODEn4DVar method, 148 

which combined the benefits of the both ensemble and variational approaches.  In this 149 

method, the analysis field can be obtained by minimizing the following cost function: 150 

*Ø Ø " Ø ÙØ Ù 2 ÙØ Ù Ȣ                       (2) 151 

Where B and R represent the background and observation error covariance matrices, the 152 

superscript T indicates the transpose of matrix, and ὼ ὼ ὼ shows the perturbation 153 

of the background vector Ø at  ὸ . 154 
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where Ù  indicates the observation increment and ώᴂrepresents the simulation of the 158 

observation increments by the forecasting model M and  observation operator H.  159 

ώ ώ ὼ ὼ ώ ὼ Ȣ                                                                       (5) 160 

ώ ȟ ώ ȟ ώ ὼ Ȣ  .                                                      (6) 161 

ώ Ὄ ὓ ᴼ ὼ Ȣ                                                                    (7) 162 

The model perturbation (MP) matrix is then defined asὢ ὼȟὼȟȣȟὼ  and the 163 

observation perturbation (OP) matrix is ὣᴂ ώ
ρ
ᴂȟώ
ς
ᴂȟȢȢȢȟώ

ὔ
ᴂ . The POD transformation is 164 

applied to the OP matrix, and which ensure the orthogonality of the transformed OP 165 

samples‰ . Orthogonal MP samples ה  are also obtained by applying the same POD 166 

transformation to MP matrix. The optimal solution Øᴂ  is calculated by using weighted 167 

mean of MP samples. 168 

ὼ ‰ȟ‍Ȣ          (8) 169 

    170 

Where ‍ ‍ ‍ ⁹⁹⁹ ‍ . Its corresponding optimal OPs are determined by 171 

ώ ὒὼ ὒ‰ȟ‍ ὒ‰ȟ ‍ ὒ ‰ȟ ‍ ‰ȟ‍         (9) 172 

 The control variable of cost function transferred to ‍  after substituting Ø and Ù into the 173 

cost function. 174 

The background error covariance matrix  B is obtained as in the ensemble Kalman filter 175 

(EnKF) (Evensen, 2004): 176 

ὄ ȟ ȟ
                                                (10) 177 
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Equations (8) and (10) then be substituted into equation (2). By solving the optimal 178 

problem, the incremental analysis can be attained. 179 

‰ͯȟ ὶ ρὍ ‰ȟὙ ‰ȟ ‰ȟὙ Ȣ                                                      (11) 180 

 ὼ ‰ȟ‰ͯȟώ                                            (12) 181 

The final analysis Ø is expressed as follow 182 

 ὼ ὼ ὼ ὼ ‰ȟ‰ͯȟώ                                                                              (13) 183 

 184 

2.3 Soil moisture data assimilation system for Pakistan 185 

The soil moisture data assimilation system for Pakistan consists of the land 186 

surface model CLM4.5, the assimilation algorithm PODEn4DVar, and the observation 187 

operator. The observation operator (H) is needed to create a relationship between 188 

observations and the forecast model CLM4.5 simulated state variables. . In this study, the 189 

observation operator is simply a real matrix, which is used to link simulated soil moisture 190 

to observed soil moisture. The observation operator is expressed as 191 

  192 

Ὄ  
В

В
                                                                                                                      (14) 193 

Where  n indicates the dimension of model state vector, ×  is (the weight calculated from 194 

the distance between two points (x, ὼ), ώ is the function value at point ὼ. 195 

This data assimilation system consists of two steps: (1) forecasting and (2) 196 

updating of state variable soil moisture. First, the daily simulated hydrogeological 197 

variables are obtained by running the CLM4.5 in the current assimilation window and 198 

then the updating procedure for the state variables according to PODEn4DVar 199 
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assimilation method. The updating process for state variables includes the following steps 200 

(Fig. 1): 201 

(a) Read the CLM4.5 daily simulation outputs and historical simulation results to 202 

obtain sample matrix and then construct the background field vector. 203 

(b) Construct the model perturbations (MP) and observation perturbations (OP) 204 

matrices. 205 

(c) Generate OP samples ‰ and MP samples ‰  by applying the POD 206 

transformation to the OP matrix and MP matrix respectively. 207 

(d) Calculate the optimal assimilation increment Ø  and the analysis field Ø  as 208 

described in the assimilation method.  209 

(e) Update the initialization file of CLM4.5 using the analysis field ØÁ and use this 210 

updated initialization file to run CLM4.5 to get a forecast for the next assimilation 211 

window and repeat the same steps for updating the state variables. 212 

 213 
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 214 

Fig. 1. Flow chart of data assimilation system. 215 

 216 

3. Evaluation Experiments 217 

3.1 Data description 218 

In this study, we used atmospheric forcing data to run land model CLM4.5 and in-219 

situ soil moisture information for the preliminary analysis and evaluation of the DA 220 

system for Pakistan. CRUNCEP version 4, with spatial resolution of 0.5°×0.5°, is a 110-221 

year (1900ï2010) dataset, which is the standard atmospheric forcing data provided with 222 

CLM4.5 and is used to derive model in offline mode. This dataset is generated by 223 

combining two datasets: (1) the 6-hourly NCEP reanalysis data with resolution of 2.5°   224 

(1948-2010)  and (2)  the monthly  CRU TS3.2 data with 0.5°resolution (1901-2002) 225 

(Mitchell and Jones, 2005) (More details on the CRUNCEP dataset are accessible at 226 



JOURNAL OF METEOROLOGICAL RESEARCH 

12 

 

http://www.cesm.ucar.edu/models/cesm1.2/clm/clm_forcingdata_esg.html). This dataset 227 

has been used widely to derive CLM in studies on plant and vegetation development,  and 228 

evapotranspiration (Mao et al., 2012; Mao et al., 2013; Shi et al., 2013), and in the 229 

TRENDY project (Piao et al., 2012). 230 

Pakistan Meteorological Department (PMD) provided the soil moisture 231 

observational data for this study. The available soil moisture data from PMD was relative 232 

soil moisture and collected three times in a month i.e. 7
th
, 17

th
, and 27

th
,   from the 233 

meteorological stations situated in agricultural fields across Pakistan. The collected 234 

relative soil moisture contents were then changed to volumetric water contents (multiply 235 

relative soil moisture contents to soil bulk density and divide it by water density) and 236 

used for assimilation and DA system evaluation.  237 

The four selected agro-meteorological data sites were considered to be 238 

representative of different agro-climatic zones in Pakistan. They ranged from arid to 239 

humid (Chaudhry and Rasul, 2004).The localities of these data sites are presented in Fig. 240 

2. Rawalpindi (RWP) agro-meteorological station is situated at the northern side of the 241 

Potohar Plateau. It represents rain fed plains with a sub-humid agro-climate. The major 242 

crops grown in this region are wheat, groundnut, and fodder. The Faisalabad (FSD) site 243 

represents the irrigated plains of central and southern Punjab and is in the dry semi-arid 244 

agro-climatic zone. Due to well managed canal system, it is a highly productive zone 245 

where wheat, rice, sugarcane, and cotton are the major crops. Quetta (QTA) is a high 246 

elevation agricultural rain fed site and has arid climatic characteristics. Wheat is the 247 

major crop in this zone. Aridity and low rainfall are the major causes of crop failure in 248 

this climatic-zone. Tandojam (TND) represents irrigated arid agro-climatic plains. It has 249 

http://www.cesm.ucar.edu/models/cesm1.2/clm/clm_forcingdata_esg.html


JOURNAL OF METEOROLOGICAL RESEARCH 

13 

 

a well-organized irrigation system, and wheat, cotton, and rice are the major crops in this 250 

region.         251 

 252 

Fig. 2. Location map of the study sites in Pakistan. 253 

 254 

3.2 Experimental design 255 

3.1.1 In-situ soil moisture assimilation 256 

The assimilation experiments were conducted at the four available soil moisture 257 

sites in Pakistan to evaluate the performance of the DA system based on CLM4.5 and 258 

PODEn4DVar. For reasonable initial conditions, a 100-year simulation of CLM4.5 was 259 

run at every data site using CRUNCEP atmospheric forcing data.  The outputs of the 260 

spin-up simulation were choose as the initial conditions for all types of assimilation 261 

experiments. The spatial resolution of the model was set to be 0.1°×0.1° for all in-situ 262 

soil moisture data assimilation experiments. In all assimilation experiments, the historical 263 
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sampling scheme (Wang et al., 2010) was used and ensemble size was fixed to be 50 264 

members. Another 50-year simulation of CLM4.5 was run using the spin-up results from 265 

the 100-year simulations as initial conditions. 266 

 267 

Table 1. Assimilating soil depths and the corresponding CLM4.5 layers 268 

 269 

 270 

In current study, the in-situ soil moisture information from four soil-depths (0ï5 271 

cm, 5ï10 cm, 10ï20 cm, and 20ï30 cm) for year 2006 were assimilated and the 272 

corresponding layers of CLM4.5 for these soil-depths are described in Table 1. To check 273 

the performance of the DA system, alternative soil moisture observations were 274 

assimilated and non-assimilated observations were considered to assess the DA system.  275 

The effects of assimilating soil moisture observations at these four upper soil-276 

depths on deeper soil-depths moisture simulations (30ï40 cm, 40ï50, 50ï70, and 70ï90 277 

cm) by CLM4.5 were also investigated. Table 2 shows the deep soil layers information. It 278 

should be noted that both the 40 cm and 50 cm soil-depths exist within a single layer of 279 

CLM4.5, but observed soil moisture data was available for these depths. Therefore, this 280 

In-situ soil depth (cm) CLM4.5 layers (depth cm) 

5 L3 (~6.2) 

10 L4 (~11.9) 

20 L5 (~21.2) 

30 L6 (~36.6) 
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information was used to evaluate the 40 and 50 cm soil-depths as well as the70 and 90 281 

cm soil-depths.  282 

 283 

Table 2. Evaluating soil depths and the corresponding layers of CLM4.5 284 

 285 

 286 

3.1.2 Observing system simulation experiments (OSSEs) 287 

Observing system simulation experiments (OSSEs) are considered one of the best 288 

options for the assessment and evaluation of a DA system because it produces both the 289 

ñobservationsò and ñtrueò states. In this study, OSSEs were conducted for Pakistan. The 290 

100-year spin up simulation of CLM4.5 with 1 degree horizontal resolution was run using 291 

CRUNCEP data to acquire the suitable initial conditions for the DA experiments. Daily 292 

simulations of CLM4.5 for year 2004 using CRUNCEP atmospheric forcing data were 293 

treated as the ñtrueò fields in this experiment. The daily averaged soil moisture values 294 

calculated by adding errors to the ñtrueò fields were used as the ñobservationsò for the 295 

assimilation. Both the simulation (without DA) and assimilation experiments were driven 296 

by QIAN atmospheric forcing data for year 2004. In OSSEs, the ensemble size and 297 

In-situ soil depth (cm) CLM4.5 layers (depth cm) 

40 L7 (~62.0) 

50 L7 (~62.0) 

70  L8 (~103.8) 

90  L8 (~103.8) 
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sampling strategy were kept the same as those used in the in-situ soil moisture 298 

assimilation experiments. In these experiments, assimilation was carried out for all ten 299 

layers of the land model whereas for in-situ soil moisture assimilation experiments, only 300 

four CLM4.5 layers were used for assimilation.  301 

 302 

3.3 Results and discussion 303 

3.3.1 In-situ soil moisture assimilation results 304 

3.3.1.1 Assimilation and evaluation results for the top layers 305 

The preliminary results of the DA system for the top layers assimilation are 306 

described in Fig. 3. The black dots in Fig. 3 indicate the observations used for the 307 

evaluation, whereas the green dots are the assimilated observations. Figure 3 (a, b, c, d) 308 

shows the assimilation results for the 0ï5 cm soil layer whereas Fig. 3 (e, f, g, h) for the 309 

20ï30 cm soil layer at the experimental sites. The assimilation results for soil-depths 5ï310 
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10 and 10-20 cm are not shown because they produced similar results. 311 

 312 

Fig. 3. Assimilation of in-situ soil moisture observations for two soil layers (0ï5 cm and 313 

20ï30 cm) at different sites (red line: simulated soil moisture (without DA), blue line: 314 

assimilation, green dot: assimilated observed soil moisture, black dot: observed soil 315 

moisture value for evaluation). 316 

Figure 3 also shows the time series of assimilation and CLM4.5 simulation 317 

(without soil moisture assimilation) for the year 2006. It is important to remind that 318 
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alternative soil moisture observations are assimilated and remaining observations are 319 

used for the evaluation of DA system.   It is observed that the assimilation time series for 320 

all stations at both soil depths (5cm and 30cm) is much closer to black dots which are the 321 

soil moisture observations used for evaluation than the simulation.  The closeness of 322 

assimilation line to black dots clearly shows that the assimilation improved the estimation 323 

of soil moisture. 324 

The statistical indices for all the sites clearly showed that assimilation has 325 

significant improvement in soil moisture estimation with higher correlation coefficients, 326 

smaller RMSE, and lower BIAS (Fig. 4). The FSD and RWP sites at two soil layers (0-5 327 

cm and 5-10 cm) with negative BIAS (Fig. 4 (i, k)) showing the underestimation whereas 328 

the other two stations (Fig. 4(j, l)) overestimated the soil moisture estimation with respect 329 

to observations. Overall the simulations showed the overestimation in soil moisture with 330 

higher biases at all stations and at maximum number of soil-depths than the assimilation 331 

run (Fig. 4(i, j, k, l)). This overestimation in soil moisture for simulation run is consistent 332 

with the previous studies (Long et al., 2013; Cai et al., 2014). However, this 333 

overestimation of soil moisture was reduced by DA, which decreased the RMSE (Fig. 4(e, 334 

f, g, h)) and produced higher correlation coefficients (Fig. 4(a, b, c, d)). At the QTA site, 335 

which was a rain fed and high elevation agricultural field site, soil moisture data was only 336 

collected during the wheat season because wheat was the major crop. The soil moisture 337 

data for two wheat seasons for year 2006 and 2007 were used for the assimilation (Fig. 338 

3(d, h)).  339 

 Thus the statistical analysis indicated that soil moisture estimation improved 340 

(Fig.4) when the in-situ soil moisture data was assimilated at four top soil layers (0ï5 cm, 341 
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5ï10 cm, 10ï20 cm, and 20ï30 cm) and hence the performance of DA system was 342 

reasonable. 343 

 344 
 345 

Fig. 4. Statistical analysis (R, RMSE, and BIAS) of simulated (without DA) and 346 

assimilated soil moisture against in-situ observations for different soil layers at different 347 

sites in Pakistan. 348 


