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Abstract A proper orthogonal decomposition (POD) method was successfully used in

the reduced-order modeling of complex systems. In this paper, we extend the applications

of POD method, namely, apply POD method to a classical finite element (FE) formulation

for second-order hyperbolic equations with real practical applied background, establish a

reduced FE formulation with lower dimensions and high enough accuracy, and provide the

error estimates between the reduced FE solutions and the classical FE solutions and the

implementation of algorithm for solving reduced FE formulation so as to provide scientific

theoretic basis for service applications. Some numerical examples illustrate the fact that

the results of numerical computation are consistent with theoretical conclusions. Moreover,

it is shown that the reduced FE formulation based on POD method is feasible and efficient

for solving FE formulation for second-order hyperbolic equations.
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1 Introduction

Let Ω ⊂ R
2 be a bounded domain with piecewise smooth boundary ∂Ω and consider the

following initial boundary value problem for a second-order hyperbolic equation in Ω× [0, T ].

Problem I Find u such that
⎧⎪⎪⎨
⎪⎪⎩
utt − ε�u = f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],

u(x, y, 0) = ϕ0(x, y), ut(x, y, 0) = ϕ1(x, y), (x, y) ∈ Ω,

(1.1)
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where utt denotes ∂2u/∂t2, ε is a positive constant, source term f(x, y, t) and initial value

functions ϕ0(x, y) and ϕ1(x, y) are all smooth enough to ensure the analysis validity, and T

is the total time. For the sake of convenience and without loss of generality, we may as well

suppose that ϕ0(x, y) and ϕ1(x, y) are all zero functions in the following theoretical analysis.

Problem I is used to describe the wave phenomena in the nature such as hydrodynamics,

displacement problems in porous media and vibrations of a membrane, acoustic vibrations of a

gas, electromagnetic processes in nonconducting. Therefore, it has very important real practical

applied background, but usually includes complex computing domain, initial value functions,

and source term which is dependent on real practical system. Generally speaking, it is not

easy to find their exact solutions for the practical second-order hyperbolic equations; on the

contrary, it is an efficient approach to find their numerical solutions (see [1–5]).

The finite element (FE) method is regarded as one of the most effective numerical methods

for finding their numerical solutions of second-order hyperbolic equations. However, some

classical FE formulations for second-order hyperbolic equations include too many degrees of

freedom. Thus, an important problem is how to reduce their degrees of freedom and alleviate

the computational load as well as to save time for calculations and resource demands in the

practical computational process. This is done in a way that guarantees sufficiently accurate

numerical solutions.

It was shown that a proper orthogonal decomposition (POD) method by combining with

some numerical methods for partial differential equations can provide efficient means of gener-

ating reduced order models and alleviating the computational load and memory requirements

(see [6]). POD method was widely and successfully applied to numerous fields, including signal

analysis and pattern recognition (see [7]), statistics (see [8]), geophysical fluid dynamics or me-

teorology (also see [8]). POD method essentially provides an orthogonal basis for representing

the given data in a certain least squares optimal sense, that is, it provides a way to find optimal

lower dimensional approximations of the given data.

In early time, POD method was mainly used to perform principal component analysis in

computations of statistics and search the main behavior of a dynamic system (see [6–8] and

their cited references), until the method of snapshots was introduced by Sirovich (see [9]) and

was then widely applied for reducing the order of the POD eigenvalue problem. Until ten

years ago, some Galerkin POD methods for parabolic problems and a general equation in fluid

dynamics were not presented (see [10, 11]). More recently, some reduced order finite difference

models and finite element (or mixed finite element) formulations and error estimates for the

non-stationary conduction–convection problems, the upper tropical Pacific Ocean model, the

non-stationary Navier-Stokes equations, Burgers equations, and parabolic equations based on

POD method were presented by our research group (see [12–20]).

To the best of our knowledge, there are no published results addressing the case that a

combination of POD method with FE method is used to deal with second-order hyperbolic

equations or providing error estimates between classical FE solutions and reduced FE solutions

or the implementation of algorithm for solving reduced FE formulation. In this paper, we ex-

tend the developments in [10–20], i.e., combine the classical FE method with POD method to

establish a reduced FE formulation with lower dimensions and sufficiently high accuracy for

second-order hyperbolic equations with real practical applied background and provide the error
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estimates between the reduced FE solutions and the classical FE solutions and the implemen-

tation of algorithm for solving reduced FE formulation so as to provide scientific theoretic basis

and computational ways for service applications. Some numerical examples illustrate the fact

that the results of numerical computation are consistent with theoretical conclusions. Moreover,

it is shown that the reduced FE formulation based on POD method is feasible and efficient for

solving second-order hyperbolic equations.

The rest of this paper is organized as follows. Section 2 recalls the classical fully discrete

FE formulation for second-order hyperbolic equations and generates snapshots from the first

fewer several transient solutions computed from the equation system derived by the classical

fully discrete FE formulation. In Section 3, the optimal orthonormal POD bases are recon-

structed from the elements of the snapshots with POD method and a reduced fully discrete FE

formulation with lower dimensions and sufficiently high accuracy based on POD method for

second-order hyperbolic equations is developed. In Section 4, the error estimates between the

classical FE solutions and the reduced FE approximate solutions based on POD method for

second-order hyperbolic equations and the implementation of algorithm for solving reduced FE

formulation are provided. In Section 5, some numerical examples are presented for illustrating

that the errors between the reduced FE approximate solutions and the classical FE solutions

are consistent with previously obtained theoretical results, thus validating the feasibility and

efficiency of POD formulation. Section 6 provides main conclusions and future tentative ideas.

2 Recall Classical Fully Discrete FE Formulation for Problem I and

Generation of Snapshots

Sobolev spaces and their norms used in this context are standard (see [21]). Let H =

H1
0 (Ω). Then, the variational formulation for Problem I can be written as follows.

Problem II Find u(t) : [0, T ]→ H such that

⎧⎨
⎩

(utt, v) + ε(∇u,∇v) = (f, v), ∀v ∈ H,
u(x, y, 0) = 0, ut(x, y, 0) = 0, (x, y) ∈ Ω,

(2.1)

where (·, ·) denotes the inner product in L2(Ω).

Let N be a positive integer, τ = T/N denote the time step increment. For any function

g(x, y, t), we define gn = g(x, y, tn) at time tn = nτ (0 � n � N) and write

gn,
1

2 =
gn+1 + gn−1

2
, ∂tg

n =
gn+1 − gn

τ
, ∂2

t g
n =

gn+1 − 2gn + gn−1

τ2
.

Then Problem II has the following equivalent formulation.

Problem III Find un+1 ∈ H such that⎧⎨
⎩

(∂2
t u

n, v) + ε(∇un, 12 ,∇v) = (fn,
1

2 , v) + (Rn1 , τ), ∀v ∈ H,
u0 = 0, u1 = 0, (x, y) ∈ Ω,

(2.2)

where Rn1 = ∂2
t u

n − utt = O(τ2∂4u/∂t4). If ϕ0(x, y) and ϕ1(x, y) are non-zero functions, it is

necessary to define u0 = ϕ0(x, y), u
1 = u0 + 2τϕ1(x, y) +Rn3 (u0 = u−1, Rn3 = O(τ3∂3u/∂t3)).
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Since the left hand side of the first equation in Problem III is a symmetric positive definite and

bounded bilinear function on H , it has a unique solution un+1 ∈ H (n = 0, 1, · · · , N − 1).

Let {	h} be a uniformly regular family of triangulation of Ω̄ (see [22–24]). The finite

element space is taken as

Hh = {uh ∈ H ; uh|K ∈ Pm(K), ∀K ∈ 	h},

where m � 1 and Pm(K) is the space of polynomials of degree � m on K. If the fully discrete

approximation of u is denoted by unh (n = 1, 2, · · · , N), then, the fully discrete FE formulation

for Problem II may be written as

Problem IV Find un+1

h ∈ Hh such that

⎧⎨
⎩

(∂2
t u

n
h, vh) + ε(∇un,

1

2

h ,∇vh) = (fn,
1

2 , vh), ∀vh ∈ Hh, n = 1, 2, · · · , N − 1,

u0
h = 0, u1

h = 0.
(2.3)

If ϕ0(x, y) and ϕ1(x, y) are non-zero functions, it is necessary to define u0
h = Phϕ0(x, y) and

u1
h = u0

h + 2τPhϕ1(x, y) (u0
h = u−1

h ), where Ph : L2(Ω) → Hh is L2 projection (see [22]). Since

the coefficient matrix of equation in Problem IV is symmetric positive definite on Hh, it has

a unique set of solutions un+1

h ∈ Hh (n = 1, 2, · · · , N + 1) under u0
h = 0, and u1

h = 0 and the

following theorem of error estimates (see [1]) holds.

Theorem 1 If f(x, y, t) ∈ H2(0, T ;H1(Ω)) ∩ L2(0, T ;Hm+1(Ω)), then there are the

following error estimates between the solution u of Problem II and the solutions unh of Problem

IV:

‖u(tn)− unh‖0 � C(hm+1 + τ2), n = 1, 2, · · · , N, (2.4)

where C is a constant independent of h and τ , but dependent on other data ε and f of Problem

II.

Thus, if only f(x, y, t), ε, ϕ0(x, y), ϕ1(x, y), the triangulation parameter h, the time step

increment τ , and the finite element spaceHh are given, we can obtain a set of solutions unh ∈ Hh,

n = 1, 2, · · · , N , by solving Problem IV. And then we choose the first L (in general, L2 = O(N);

for example, L = 20, N = 200) instantaneous solutions uih(x, y), 1 � i � L (which are useful

and of interest for us) from N instantaneous solutions unh(x, y), n = 1, 2, · · · , N , for Problem

IV, which are referred to as snapshots of POD method.

Remark 1 When one computes actual problems, he may obtain the ensemble of snap-

shots from physical system trajectories by drawing samples from experiments and interpolation

(or data assimilation). For example, computing for real practical physical systems, one can use

theirs previous prediction results to construct the ensemble of snapshots, then reconstruct the

POD optimal basis for the ensemble of snapshots by using the following POD method, and

finally the finite element space Hh is substituted with the subspace generated with POD basis

in order to derive their reduced order physical systems with lower dimensions. Thus, the future

change of physical systems can be quickly simulated, which is a result of major importance for

real-life applications.
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3 Generation of POD Basis and Reduced FE Formulation Based on

POD Method for Problem I

For uih(x, y) (n = 1, 2, · · · , L) in Section 2, let Wi(x, y) = uih(x, y) (1 � i � L) and

V = span{W1,W2, · · · ,WL}, (3.1)

and refer to V as the space generated by the snapshots {Wi}Li=1 at least one of which is assumed

to be non-zero function. Let {ψj}lj=1 denote an orthonormal basis of V with dimension l =

dimV . Then each member of the ensemble {Wi}Li=1 can be expressed as

Wi =

l∑
j=1

(Wi, ψj)Hψj , i = 1, 2, · · · , L, (3.2)

where (Wi, ψj)H = (∇uih,∇ψj), (·, ·) being the L2-inner product.

Definition 1 The method of POD consists in finding the orthonormal basis ψj (j =

1, 2, · · · , l) such that, for every d (1 � d � l), the mean square error between the elements Wi

(1 � i � L) and corresponding dth partial sum of (3.2) is minimized on average

min
{ψj}d

j=1

1

L

L∑
i=1

∥∥∥∥Wi −
d∑
j=1

(Wi, ψj)Hψj

∥∥∥∥
2

H

(3.3)

subject to

(ψr, ψj)H = δrj , 1 � r � d, 1 � j � r, (3.4)

where ‖Wi‖2H = ‖∇uih‖20. A solution {ψj}dj=1 of (3.3)–(3.4) is known as a POD basis of rank d.

We introduce the Gramian matrix A = (Aij)L×L ∈ RL×L corresponding to the snapshots

{Wi}Li=1 by

Aij =
1

L
(Wi,Wj)H . (3.5)

The matrix A is positive semi-definite and of rank l. Thus, the solution of (3.3)–(3.4) can be

found; moreover, there hold the following results (see [9–12]).

Proposition 2 Let λ1 � λ2 � · · · � λl > 0 denote the positive eigenvalues of A and v
1,

v
2, · · ·, v

l the associated orthonormal eigenvectors. Then a POD basis of rank d � l is given

by

ψi =
1√
Lλi

L∑
j=1

(vi)jWj , 1 � i � d � l, (3.6)

where (vi)j denote the j-th component of the eigenvector v
i. Furthermore, the following error

formula holds

1

L

L∑
i=1

∥∥∥∥Wi −
d∑
j=1

(Wi, ψj)Hψj

∥∥∥∥
2

H

=

l∑
j=d+1

λj . (3.7)

Let Hd = span {ψ1, ψ2, · · · , ψd}, then Hd ⊂ Hh. For u ∈ Hh, define the Ritz projection

P d: Hh → Hd by

(∇P du,∇vd) = (∇u,∇vd), ∀vd ∈ Hd. (3.8)
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Then there is an extension P h: H → Hh of P d such that P h|Hh
= P d : Hh → Hd defined by

(see [26])

(∇P hu,∇vh) = (∇u,∇vh), ∀vh ∈ Hh. (3.9)

Due to (3.9) the operator P h is well-defined and bounded (see [18, 20]):

‖∇P hu‖20 � ‖∇u‖20, ∀u ∈ H, (3.10)

‖u− P du‖0 � Ch‖∇(u− P hu)‖0, ∀u ∈ H, (3.11)

and there hold the following results (also see [18, 20]).

Lemma 3 For every d (1 � d � l), if τ = O(h), the projection operator P d satisfies

1

L

L∑
i=1

[‖uih − P duih‖20 + h2‖∇(uih − P duih)‖20] � Ch2

l∑
j=d+1

λj , (3.12)

where uih ∈ Hh is the solution of Problem V.

Thus, by using Hd, we can obtain the reduced fully discrete FE formulation based on POD

method for Problem IV as follows.

Problem V Find un+1

d ∈ Hd such that⎧⎨
⎩

(∂2
t u

n
d , vd) + ε(∇un,

1

2

d ,∇vd) = (fn,
1

2 , vd), ∀vd ∈ Hd, n = 1, 2, · · · , N − 1,

u0
d = 0, u1

d = 0.
(3.13)

If ϕ0(x, y) and ϕ1(x, y) are non-zero functions, it is necessary to define u0
d = P du0

h and u1
d =

u0
d + 2τP dϕ1(x, y) (u0

d = u−1

d ). Since the coefficient matrix of Problem V is symmetric positive

definite on Hd, it has a unique set of solutions un+1

d ∈ Hd (n = 1, 2, · · · , N − 1) under u0
d = 0

and u1
d = 0. Moreover, it is easy to prove that un+1

d satisfy the following inequality

‖un+1

d ‖20 � C

(
‖u1

d‖20 + ‖u0
d‖20 + τ

n∑
i=1

‖f i, 12 ‖20
)

exp(8εT ) (n = 1, 2, · · · , N − 1), (3.14)

which show that the solution of Problem V is stable and continuously dependent on source

term f(x, y, t) and initial conditions ϕ0(x, y) and ϕ1(x, y) if we don’t assume that they are zero

functions.

Remark 2 If 	h is a uniformly regular triangulation and Hh is taken as the space of

piecewise linear functions, the total degrees of freedom for Problem IV, i.e., the number of

unknown quantities, is Nh (where Nh is the number of inner vertices of triangulation 	h, see

[22–24]), while the number of total degrees of freedom for Problem V is d (d 
 l � L). For

scientific engineering problems, the number of inner vertices of triangulation 	h is more than

ten thousands or even more than a hundred million, while d is only the number of few maximal

eigenvalues which are chosen to be the first L snapshots from the N solutions, so that it is

very small (for example, in Section 5, d = 6, while Nh = 2000 × 2000 = 4 × 106). Therefore,

Problem V is a reduced fully discrete FE formulation based on POD method for Problem IV.

Moreover, since the development and change of many physical systems are closely related to

previous results, one may truly capture laws of change of physical systems by using existing

results as snapshots to construct POD basis and solve PDEs corresponding to physical systems.

Therefore, the POD method provides useful and important application.
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4 Error Analysis of Solutions for Problem V and Implementation of

Its Algorithm

4.1 Error Estimates of Solutions for Problem V

In this subsection, we recur to the classical FE method to derive the error estimates of

solutions for Problem V. To this end, it is necessary to introduce the following discrete Gronwall

Lemma (see [22, 25]).

Lemma 4 (Discrete Gronwall Lemma) If {an}, {bn}, and {cn} are three positive se-

quences, and {cn} is monotone, satisfying

an + bn � cn + λ̄
n−1∑
i=0

ai, λ̄ > 0, a0 + b0 � c0,

then

an + bn � cn exp(nλ̄), n � 0.

We have the following main results for Problem V.

Theorem 5 Under hypotheses of Theorem 1, if k = O(h), L2 = O(N), then the following

error estimates hold:

‖unh − und‖0 � C

(
τ

l∑
j=d+1

λj

) 1

2

, n = 1, 2, · · · , L. (4.1)

Proof Since Hd ⊂ Hh, subtracting Problem V from Problem IV taking vh = vd ∈ Hd

yields that

(∂2
t (u

n
h − und ), vd) + ε(∇(u

n, 1
2

h − un,
1

2

d ),∇vd) = 0, ∀vd ∈ Hd, (4.2)

Let θ = uh − ud. Thus, on the one hand, we have that

(∂2
t θ
n, θn+1 − θn−1) +

ε

2
(∇(θn+1 + θn−1),∇(θn+1 − θn−1))

= (∂tθ
n − ∂tθn−1, ∂tθ

n + ∂tθ
n−1) +

ε

2
(∇(θn+1 + θn−1),∇(θn+1 − θn−1))

= ‖∂tθn‖20 − ‖∂tθn−1‖20 +
ε

2
‖∇θn+1‖20 −

ε

2
‖∇θn−1‖20, (4.3)

and on the other hand, by using Hölder inequality and Cauchy inequality, we have, from (4.2),

(3.8), and (3.11), that

(∂2
t θ
n, θn+1 − θn−1) +

ε

2
(∇(θn+1 + θn−1),∇(θn+1 − θn−1))

= (∂2
t θ
n, un+1

h − P dun+1 − (un−1

h − P dun−1)) + (∂2
t θ
n, P dun+1

h − un+1

d − (P dun−1

h − un−1

d ))

+
ε

2
(∇(un+1

h + un−1

h )−∇P d(un+1

h + un−1

h ),∇(un+1

h + un−1

h )−∇P d(un+1

h + un−1

h ))

+
ε

2
(∇(θn+1 + θn+1),∇(P dun+1

h − un+1

d − (P dun−1

h − un−1

d )))

= (∂t(u
n
h − und)− ∂t(un−1

h − un−1

d ), ∂t(u
n
h − P dun) + ∂t(u

n−1

h − P dun−1))

+
ε

2
(∇un+1

h −∇P dun+1

h +∇un−1

h −∇P dun−1

h ,∇un+1

h −∇P dun+1

h − (∇un−1

h −∇P dun−1

h ))

� τ
1

2 (‖∂tθn‖20 + ‖∂tθn−1‖20) + Cτ−
1

2 (‖∂t(unh − P dun)‖20 + ‖∂t(un−1

h − P dun−1)‖20)
+
ε

2
(‖∇un+1

h −∇P dun+1

h ‖20 − ‖∇un−1

h −∇P dun−1

h ‖20). (4.4)
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Combining (4.3) with (4.4) yields that

‖∂tθn‖20 − ‖∂tθn−1‖20 +
ε

2
‖∇θn+1‖20 −

ε

2
‖∇θn−1‖20

= Cτ−
1

2 (‖∂t(unh − P dun)‖20 + ‖∂t(un−1

h − P dun−1)‖20) + τ
1

2 (‖∂tθn‖20
+‖∂tθn−1‖20) +

ε

2
(‖∇un+1

h −∇P dun+1

h ‖20 − ‖∇un−1

h −∇P dun−1

h ‖20). (4.5)

Noting that θ0 = 0 and summing (4.5) from 1 to n− 1 yield that

‖∂tθn−1‖20 +
ε

2
‖∇θn‖20 � Cτ−

5

2

n∑
i=1

‖uih−P dui‖20 +2τ
1

2

n−1∑
i=1

‖∂tθi‖20 +
ε

2
‖∇unh−∇P dunh‖20. (4.6)

If τ is sufficiently small, for example, τ
1

2 � 1/4, we obtain that

‖∂tθn−1‖20 + ε‖∇θn‖20 � Cτ−
5

2

n∑
i=1

‖uih−P dui‖20 +4τ
1

2

n−2∑
i=1

‖∂tθi‖20 + ε‖∇unh−∇P dunh‖20. (4.7)

By applying Lemma 4 (discrete Gronwall lemma) to (4.7), if τ = O(h) and L2 = O(N) (i.e.,

τ
1

2 = O(L−1)), we have from (4.7) and Lemma 3, that

‖∂tθn−1‖20 + ε‖∇θn‖20 �

[
Cτ−

5

2

n∑
i=1

‖uih − P dui‖20 + ε‖∇unh −∇P dunh‖20
]

exp(4Lτ
1

2 )

� C‖∇unh −∇P dunh‖20 + Cτ−
5

2

n∑
i=1

‖uih − P duih‖20

� Cτ−
1

2

l∑
j=d+1

λj . (4.8)

Moreover, by extracting the square root of (4.8), and then using triangular inequality, finally

squaring it, we get from Lemma 3 that

‖unh − und‖20 � ‖un−1

h − un−1

d ‖20 + Cτ
3

2

l∑
j=d+1

λj . (4.9)

Note that u0
h = u0

d = 0. Summing (4.9) from 1 to n yields that

‖unh − und‖20 � CLτ
3

2

l∑
j=d+1

λj � Cτ

l∑
j=d+1

λj , (4.10)

which yields (4.1). �

Combining Theorem 1 with Theorem 5 yields the following result.

Theorem 6 Under hypotheses of Theorem 5, the error estimates between the solutions

for Problem II and the solutions for the reduced Problem V are

‖u(tn)− und‖0 � Cτ2 + Chm+1 + C

(
τ

l∑
j=d+1

λj

) 1

2

, n = 1, 2, · · · , L. (4.11)

Remark 3 Theorems 5 and 6 provide the error estimates between the solutions of the

reduced FE formulation Problem V and the solutions of classical FE formulation Problem IV
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and Problem II, respectively. Our method here employs some FE solutions unh for Problem IV as

assistant analysis. However, when one computes actual hyperbolic equations, he may obtain the

ensemble of snapshots from physical system trajectories by drawing samples from experiments

and interpolation (or data assimilation) or previous results. Therefore, the assistant unh could

be replaced by the interpolation functions of experimental and previous results, thus rendering

it unnecessary to solve Problem IV, and requiring only to solve reduced Problem V directly

such that Theorem 5 is satisfied. And then, time tL is continuously extrapolated forward and

POD basis is ceaselessly renewed, the rules of development and change of future physical system

would be very simulated well.

4.2 Implementation of Algorithm for Problem V

In the following, we give the implementation of algorithm for solving Problem V, which

consists of seven steps.

Step 1 Generate the snapshots ensemble

Wi(x, z) = uih, i = 1, 2, · · · , L
 N,

which may be the first L solutions for Problem IV, physical system trajectories by drawing

samples from experiments and interpolation (or data assimilation), or previous results;

Step 2 Generate the correlation matrix A = (Aik)L×L, Aik = 1

L(Wi,Wk)H , and (Wi,

Wk)H = (∇uih,∇ukh), (·, ·) is the L2-inner product;

Step 3 Solving the eigenvalue problem

Av = λv, v = (a1, a2, · · · , aL)T ,

obtains eigenvectors v
k = (ak1 , a

k
2 , · · · , akL) and corresponding eigenvalues λk (k = 1, 2, · · · ,

l = dim{W1,W2, · · · ,WL});
Step 4 For given error δ needed, decide on the amounts m of degree of polynomial and

d of POD basis such that τ2 + hm+1 +
(
τ

l∑
j=d+1

λj

)1/2

� δ;

Step 5 Generate POD basis ψk(x, y):

ψk(x, y) =
1√
Lλk

L∑
i=1

akiWi(x, y) =
1√
Lλk

L∑
i=1

aki u
i
h, k = 1, 2, · · · , d.

Step 6 TakingHd = span {ψ1(x, y), ψ2(x, y), · · · , ψd(x, y)} and solving Problem V which

only includes d degrees of freedom yield the solutions und (n = 1, 2, · · · , L, L+ 1, · · · , N).

Step 7 If ‖un−1

d −und‖0 � ‖und−un+1

d ‖0 (n = L,L+1, · · · , N−1), und (n = 1, 2, · · · , N) are

the solutions for Problem V whose errors are greater than τ2+hm+1+
(
τ

l∑
j=d+1

λj

)1/2

. Else, i.e.,

if ‖un−1

d −und‖0 < ‖und−un+1

d ‖0 (n = L,L+1, · · · , N−1), let Wi = uid (i = n−L, n−L−1, · · · , n),

repeat Step 1 to Step 6.

5 Some Numerical Experiments

In this section, some numerical examples of second-order hyperbolic equations are used to

validate the feasibility and efficiency of the reduced FE formulation, i.e., Problem V based on

POD method.
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For the sake of convenience, without loss of generality, herein we consider a second-order

hyperbolic equations by choosing ε = 1/π2, Ω = [0, 2] × [0, 2], total time T = 0.4, ϕ0(x, y) =

sinπx sinπy, ϕ1(x, y) = −2 sinπx sin πy, and f(x, y, t) = 5e−2t sinπx sinπy in Problem I as

an example, whose ideas and approaches could directly apply to numerical computations for

second-order hyperbolic equations with real practical applied background.

We first divide the field Ω into 2000×2000 small squares with side length�x = �y = 0.001,

and then link the diagonal of the square to divide each square into two triangles in the same

direction which consists of triangulation 	h. Thus h =
√

2× 0.001. In order to make τ = O(h)

to be satisfied, we take time step size as τ = 0.002.

Fig.1 Figure of solution un

h of classical FE formulation when t = 0.4

Fig.2 Figure of solution un

d of reduced FE formulation when d = 6, t = 0.4

We first find a set of numerical solutions unh of classical FE formulation, i.e., Problem IV

with piecewise polynomial of degree 1 when n = 1, 2, · · · , 200, i.e., at time t = 1τ, 2τ, · · · , 200τ ,

constructing 200 numerical solutions unh (n = 1, 2, · · · , 200). And then, the first 20 numerical
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solutions unh (n = 1, 2, · · · , 20) are chosen as snapshots Wi = uih (i = 1, 2, · · · , 20). Finally,

we find 20 eigenvalues which are arranged in a non-increasing order and 20 eigenvectors cor-

responding to then, and using (3.6), we construct 20 POD bases ψj (j = 1, 2, · · · , 20). Take

the first 6 POD bases ψj (j = 1, 2, · · · , 6) from 20 POD bases ψj (j = 1, 2, · · · , 20) to expand

into subspace Hd and compute a numerical solution at t = 200τ with reduced FE formulation,

i.e., the reduced Problem V according seven steps in Subsection 4.2, without renewing POD

basis, we obtain the numerical solutions und (n = 200, i.e., t = 200τ = 0.4) which are depicted

graphically in Fig. 2. While the classical FE solution to Problem V with piecewise polynomial

of degree 1 at t = 200τ = 0.4, is depicted graphically in Fig. 1. Fig. 1 and Fig. 2 exhibit quasi-

identical similarity, but POD solution is better than classical FE solution (due to using more

initial numerical solutions, i.e., six POD bases, which is an open problem).

Fig.3 When t = 0.4, the errors between solutions of Problem V with different number of

POD bases for a group of 20 snapshots and the classical FE solution of Problem IV with

piecewise polynomial of degree 1

When we take 6 POD bases and τ = 0.002, by computing we obtain that
[
τ

20∑
j=7

λj

]1/2

+τ2 + h2 � 5× 10−6. Fig. 3 computationally shows the errors between solutions und of the re-

duced FE formulation with first 20 different POD bases among all POD bases and the solution

unh of classical FE formulation at t = 200τ (i.e., n = 200), respectively. Comparing the classical

FE formulation with the reduced FE formulation containing 6 POD bases implementing the

numerical simulation computations when total time t = 200τ , we find that for classical FE

formulation with piecewise linear polynomials for unh, which has 2000× 2000 = 4× 106 degrees

of freedom, the required computing time is 240 seconds, while for the reduced FE formulation

with 6 POD bases, which has only 6 degrees of freedom, the corresponding time is only 2 sec-

onds, i.e., the required computing time to solve the classical FE formulation is as 120 times

as that to do the reduced FE formulation with 6 POD bases, while the errors between their

respective solutions do not exceed 5 × 10−6. Though our examples are in sense recomputing

what we have already computed by classical FE formulation (but only use the first 20 numer-

ical solutions unh (n = 1, 2, · · · , 20) in the first 20 steps), when we compute actual problems,
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we may also construct the snapshots and POD basis with interpolation or data assimilation by

drawing samples from experiments, then solve directly the reduced FE formulation, while it is

unnecessary to solve classical FE formulation such that the computational load could be alle-

viated and time-consuming of calculations in the computational process is saved. It also shows

that finding the approximate solutions for second-order hyperbolic equations with the reduced

FE formulation is computationally very effective. And the results for numerical examples are

consistent with those obtained for the theoretical cases.

6 Conclusions

In this paper, we have employed the POD method to derive a reduced FE formulation for

second-order hyperbolic equations with real practical applied background, analyzed the errors

between the solutions of their classical FE formulation and the solutions of the reduced FE

formulation based on POD method, and provide the steps of the implementation of algorithm for

solving the reduced FE formulation, i.e., Problem V, which shows that our present method has

improved and innovated the existing methods (for example, the methods in [10–20]). Comparing

with the theoretical error estimates, the error estimates have been verified to provide quite good

results, namely, the theoretical errors and the computing errors coincide within plot accuracy,

thus validating both the feasibility and efficiency of our reduced FE formulation. Though

snapshots and POD basis of our numerical examples are constructed with the first few solutions

of the classical FE formulation, when one computes actual second-order hyperbolic equations,

this process can be omitted in actual applications and one may construct the snapshots and

POD basis with interpolation or data assimilation by drawing samples from experiments, then

solving Problem V, while it is unnecessary to solve Problem IV such that the computational

load could be alleviated and time-consuming of calculations in the computational process is

saved. Therefore, the method in this paper gives a good prospect of extensive applications.

Future research work in this area will aim at extending the reduced FE formulation, applying

it to a set of more complicated PDEs such as the atmosphere quality forecast system and the

ocean fluid forecast system.
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