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Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on 
climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by influencing ground evapotranspi-
ration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent heat flux. At the global scale, the extent 
of its influence on the atmosphere is second only to that of sea surface temperature. At the terrestrial scale, its influence is even 
greater than that of sea surface temperatures. This paper presents a China Land Soil Moisture Data Assimilation System 
(CLSMDAS) based on EnKF and land process models, and results of the application of this system in the China Land Soil 
Moisture Data Assimilation tests. CLSMDAS is comprised of the following components: 1) A land process mo- 
del—Community Land Model Version 3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research 
(NCAR); 2) Precipitation of atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the 
FY2 geostationary meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observa-
tion data including satellite-inverted soil moisture outputs of the AMSR-E satellite and soil moisture observation data. Results 
of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both simulation and assimila-
tion results of the land model reflected reasonably the temporal-spatial distribution of soil moisture. The assimilated soil mois-
ture distribution matches very well with severe summer droughts in Chongqing and Sichuan Province in August 2006, the 
worst since the foundation of the People’s Republic of China in 1949. It also matches drought regions that occurred in eastern 
Hubei and southern Guangxi in September. 

EnKF land data assimilation, AMSR-E soil moisture, FY2C geostationary satellite, high-resolution precipitation, sur-
face incident solar radiation 
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Soil moisture affects matter and energy balances between 
land and atmosphere through influencing moisture flux, 
sensible heat, and latent heat flux. Accurate estimates of the 
spatial and temporal distribution of soil moisture are of vital 

importance to further understanding the ecological and 
physical processes of land and land-atmosphere interactions, 
and are of great importance in the research and application 
of meteorology in environmental management, ecology, 
hydrology, and agriculture. Soil moisture information can 
currently be acquired with the following methods: regular 
and field observations, satellite remote sensing, and land  
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hydrological modeling and simulation. Soil moisture data 
acquired through regular observation has a low temporal 
frequency and few spatial points, and using some field ob-
servations is interim and limited to a small range. Regular 
and field soil moisture observations provide only point- 
based data and cannot represent spatial variations in the soil 
moisture profile. Synchronous field observation is usually 
expensive. Satellite remote sensing can provide global soil 
moisture data with a high spatial and temporal resolution, 
which cannot be achieved via the regular observation net-
work. However, soil moisture observations based on satel-
lite remote sensing are also problematic. Precision of soil 
moisture inversion is related to soil type, ground surface 
roughness, and vegetation coverage. The uncertainty in the-
se parameters results in inversion errors and insufficient 
temporal and spatial resolutions. Soil moisture obtained 
through land hydrological modeling simulation and calcula-
tion has good temporal frequency and spatial distribution. 
However, its precision is influenced greatly by model 
structure and input data. Land assimilation technology 
serves as an effective solution to these problems [1, 2]. It is 
a technical approach that integrates optimally physical pro-
cess information of the land model.  

Data assimilation methods used currently in atmospheric, 
marine, and land data assimilation systems include mainly 
the optimal interpolation method, 3-D variation method, 
4-D variation method, Kalman filter, and EnKF. EnKF is an 
assimilation method is used widely in land model assimila-
tion systems, and uses the Monte Carlo method (overall 
integration method) to calculate predicted error covariance 
of the state. It was proposed by Evensen on the basis of Ep-
stein’s stochastic dynamic prediction theory [3]. The model 
state prediction is considered an approximately stochastic 
dynamic prediction. An overall state is used to represent the 
probability density function in a stochastic dynamic predic-
tion. By integrating ahead, we can calculate easily the sta-
tistical characteristics (e.g., mean value and covariance) 
corresponding to probability density functions at various 
times of the overall state. EnKF key feature is that it does 
not require linearized model operators or observation oper-
ators as the Kalman filter does. Huge and low-efficiency 
computation requirements are its greatest drawbacks. As all 
current land models are single-column models, they contain 
much fewer model state variables than atmospheric and 
marine models and thus have a higher computational effi-
ciency. Strong non-linear characteristics in land process 
models are significant.  

Starting in 1998, the Department of Hydrological Sci-
ences and Data Assimilation Office of US NASA Goddard 
Space Flight Center organized many organizations to initi-
ate the research of Land Data Assimilation System (LDAS), 
and developed the Global Land Data Assimilation System 
(GLDAS). US National Oceanic and Atmospheric Admin-
istration also offers support for hydrology-based LDAS 
research at the scale of the North American continent 
(North America Land Data Assimilation System project). 

Land data assimilation uses many kinds of new satellite and 
ground-based observation data to generate optimal land 
state and flux data (http://www.knmi.nl/samenw/LDAS/). In 
2001, Europe started research on the European Land Data 
Assimilation System. The main purpose of ELDAS research 
is to improve forecasting and monitoring of floods and 
droughts. The ELDAS project conducted to: assemble spe-
cialists in soil moisture assimilation to design and produce a 
unified, flexible, and practical data assimilation framework; 
use independent observation data to verify the assimilated 
soil moisture field; evaluate the seasonal water circulation 
forecast after soil moisture data assimilation; evaluate flood 
risk; establish an exemplary data set covering at least one 
season over the European region; use data from new satel-
lite platforms MSG (MTEOSAT Second Generation) and 
SMOS (ESA Soil Moisture/Ocean Salinity Mission); and 
make European contributions to the Global Land Data As-
similation System. ELDAS has been applied in four numer-
ical forecasting centers (ECMWF, DWD, CNRM and INM) 
and already been brought from the research stage into the 
service operation stage (http://www.knmi.nl/samenw/ 
eldas/). The West China Land Data Assimilation System 
(WCLDAS) was researched and developed by the Cold and 
Arid Regions Environmental and Engineering Research 
Institute, Chinese Academy of Sciences and Department of 
Atmospheric Sciences, School of Resources and Environ-
ment, Lanzhou University. The institute established a sin-
gle-point soil moisture assimilation system based on EnKF 
and SiB2 models, and completed preliminary analysis and 
evaluation of this assimilation system [4, 5]. Yang et al. [6] 
developed an automatic rating system used to estimate 
moisture and energy balances of soil by assimilating 
AMSR-E vertical polarization 6.9 and 18.7 GHz luminance 
temperature data. Tian et al. [7–13], Zhang et al. [14, 15], 
and Jia et. al. [16] researched the improvement of land data 
assimilation methods and the rating of microwave lumi-
nance temperature assimilation observation operator mod-
els.  

This paper explains the composition of the China Land 
Soil Moisture Data Assimilation System (CLSMDAS), 
processing methods and quality inspection of atmospheric 
driving data, the performance test of CLSMDAS with sin-
gle-point observation data, error analysis of observed soil 
moisture data, and design, and analysis of the CLSMDAS 
experiment.  

1  China Land Soil Moisture Data Assimilation 
System 

CLSMDAS is comprised mainly of the following (Figure 1): 
1) Land model: A NCAR-CLM3.0 land model used widely 
at present; 2) Driving data: High spatial and temporal reso-
lution precipitation estimates and ground-incident solar ra-
diation data acquired from the FY2 geostationary meteoro-
logical satellites, and surface air temperatures, humidity, 
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Figure 1  Structure of the China Land Soil Moisture Data Assimilation System. 

atmospheric pressure and wind speed in the NCEP reanaly-
sis data set are interpolated temporally and spatially to con-
struct atmospheric driving data of the land model; 3) Data 
assimilation method: We have chosen the EnKF assimila-
tion method which is suitable for land data assimilation; 4) 
Observation data: Soil moisture inversion data acquired 
from AMSR-E carried by the AQUA EOS satellite, and soil 
moisture data observed at ground level, are used; 5) Output 
data set: Assimilated soil moisture grid point data can be 
output. CLSMDAS works at present on a SGI-LINUX 
platform. Its individual components are described below.  

1.1  Land surface model 

The land surface model is the core of the land data assimila-
tion system. The extent to which the land surface model 
describes accurately and reasonably the energy and material 
exchanges at the ground surface has a direct influence on 
the output of the land assimilation system, forecasting the 
state of the next iteration. A land process mod-
el—Community Land Model Version 3.0 (CLM3.0 for 
short)—developed by US National Center for Atmospheric 
Research (NCAR) [17] was used here.  

The CLM3.0 model is designed mainly for coupling with 
the atmospheric numerical model and provides the surface 
albedo (direct and scattered light within the visible and in-
frared bands), upward long-wave radiation, sensible heat 
flux, latent heat flux, water vapor flux, and east-to-west and 
south-to-north surface stress needed by the atmospheric 
model. These parameters are controlled by many ecological 
and hydrological processes. The model simulates the phe-
nology of leaves and physiological and water circulations of 
pores. Ecological differences between vegetation types and 
thermal and hydraulic differences between dif- 

ferent soil types are also considered. Each grid cell can be 
covered by several types of land surfaces. The river 
transport model transfers downward to the sea. Because this 
land model has to be coupled with the climate model and 
numerical weather forecast model, compromise has to be 
made between effectiveness and complexity of the paramet-
ric computation of land processes. Land spatial non-    
uniformity is realized by nesting subgrids where one grid 
cell contains several land units, snow and soil cylindrical 
blocks, and different types of vegetation. Each cell contains 
several land units, each land unit contains a different num-
ber of soil and snow cylindrical blocks, and each cylindrical 
block may contain several types of vegetation functions [18]. 
Many researchers have tested and evaluated the application 
of the CLM3.0 model in China and proved the feasibility of 
its application in China [17].  

The EnKF assimilation module is coupled mainly with 
the soil moisture module. Below is the equation of 
one-dimensional soil water vertical motion (horizontal flow 
is ignored) used in CLM3.0:  

 ,fm

θ q
E R

t z

∂ ∂
= − − −

∂ ∂
 (1) 

where θ is the volumetric water content of soil (m3/m3), q is 
vertical soil water flux (mm/s), E is evaporation rate (mm/s). 
Rfm is melting (negative) or freezing (positive) rate, and z is 
vertical distance to the ground surface (positive under q and 
z directions) [17].  

1.2  Atmospheric driving data 

One of the difficulties preventing us improving the land 
model simulation precision is lack of long-term, high-reso- 
lution, observational atmospheric driving data. Atmospheric 
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driving data usually requires diurnal precipitation, atmos-
pheric temperature, relative humidity, atmospheric pressure, 
wind speed and downward solar radiation data, which can-
not be observed directly at the global scale. Much work has 
been done on processing atmospheric driving data for of-
fline land surface models. Qian et al. [19] showed that there 
are false long-term variations with NCEP’s reanalysis of 
precipitation and solar radiation. The errors in precipitation 
data will affect inevitably the effects of soil moisture pre-
diction, simulation, and assimilation. Other researchers have 
also realized these problems, and as a result either directly 
use observation or adjust the reanalysis data.  

In this paper, inverted precipitation and ground-incident 
solar radiation products acquired through high spatial and 
temporal resolution FY2C satellite data were introduced and 
combined with the NCEP reanalysis data to establish a set 
of high-quality atmospheric driving data which covers the 
Chinese region.  

1.2.1  High spatial- and temporal-resolution precipita-
tion 

FY2C/D/E satellite precipitation estimate outputs can be 
downloaded free of charge from the website of the China 
Satellite Data Service Center (http://satellite.cma.gov.cn/). 
Precipitation estimate outputs include daily accumulative 
and 6-hour accumulative precipitation estimate outputs. A 
new hourly accumulative precipitation estimate output was 

made available in September 2008. The integral time step of 
the CLM3 land model is 30 min. Therefore, we need at-
mospheric forcing data with high temporal resolution. 
Compared with the 6-hour accumulative precipitation data, 
the hourly precipitation data is more suitable to drive simu-
lation of the land model. To this end, Shi and Xie [20] de-
veloped a method to perform time-weighted interpolation of 
accumulative precipitation on the basis of hourly geosta-
tionary satellite cloud category information. This was ap-
plied to the FY2C 6-hour precipitation estimate output pro-
vided by the China Satellite Data Service Center, to derive a 
precipitation data set with 0.1°×0.1° spatial resolution and 
1-h temporal resolution, and used automatic rainfall obser-
vation data from China to verify and evaluate the precipita-
tion estimate data. The result indicated that the method was 
reasonable. See Figure 2 for the process flow of geostation-
ary satellite 1-hour precipitation output. See ref. [21] for 
details on the processing and quality evaluation of precipi-
tation data.  

1.2.2  Incident solar radiation data with high spatial 
and temporal resolution 

FY2C/D/E incident solar radiation output can be down-
loaded free of charge from the website of China Satellite 
Data Service Center (http://satellite.cma.gov.cn/). The tem-
poral resolution of the product is 1 day. The spatial resolu-
tion is 0.5°×0.5°. Due to its low spatial and temporal 

 

 

Figure 2  Precipitation process flow with high spatial and temporal distribution. 
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resolution, the output does not meet the requirements of the 
land surface model for atmospheric forcing data. Therefore, 
an inversion algorithm was used here on the FY2C/D/E 
ground-incident solar radiation output of the China Satellite 
Data Service Center (http://satellite.cma.gov.cn/). Visi-
ble-band observations acquired through the FY2C geosta-
tionary meteorological satellite are used to generate a 
ground-incident solar radiation data set with a temporal res-
olution of 1 hour and a spatial resolution of 0.1°×0.1°. The 
quality of this data set was verified with the solar radiation 
data from five China Meteorological Administration cli-
matic observation stations.  

The discrete ordinate method proposed by Stamnes et al. 
[22] was used to calculate radiation transfer in the inversion 
algorithm for the ground-incident solar radiation output. 
This algorithm calculates the radiance of any direction and 
thus gives consideration to the anisotropy of solar radiation 
reflected at the top of the atmospheric layer. It first calcu-
lates the radiance of solar radiation reflected towards the 
satellite observation direction at the top of the atmospheric 
layer, and then converts it into the visible two-way albedo 
observed through the visible light channel of the satellite. 
The period in which the solar radiation incident at the top of 
the atmospheric layer penetrates the atmosphere and reaches 
the ground surface contains a series of physical interaction 
processes with the atmosphere and the ground surface. The 
inversion model considers mainly: 1) ozone absorption; 2) 
repeated Rayleigh scattering of molecules; 3) repeated scat-
tering and absorption of cloud droplets; 4) water vapor ab-
sorption; 5) repeated scattering and absorption of aerosol; 
and 6) repeated reflection between the ground surface and 
the atmosphere. Similar to the work of Stuhlmann et al. [23], 
we designed a 5-layer planoparallel ideal atmospheric mod-
el which is not uniform in the vertical direction. It is divided 
into five solar spectral intervals (0.2–0.4, 0.4–0.5, 0.5–0.6, 
0.6–0.7, 0.7–4.0 μm) to calculate the scattering, absorption, 
and reflection of solar radiation that take place within them. 
Judged by the extents to which the above- mentioned phys-
ical processes influence the ground-incident solar radiation, 
cloud has a greater effect than all other factors by one order 
of magnitude. Ground-incident solar radiation is determined 
mainly by cloud, which needs to be stressed in the inversion 
model.  

Yuan Wanping performed many tests and verifications of 
the inversion algorithm of ground-incident solar radiation 
(http://satellite.cma.gov.cn/). In this paper, the ground-based 
observation data provided by newly-built climatic observa-
tion stations of China Meteorological Administration was 
used for a comparative verification of the FY2C ground- 
incident solar radiation data between July 2005 and June 
2009. The five climatic observation stations were located in 
Xilinhot, Shouxian, Zhangye, Dali, and Dianbai. Figure 3(a) 
shows time-varying ground-incident solar radiation data 
observed at Xilinhot Observation Station and inverted from 
FY2C satellite data. The horizontal coordinate is time, the 

unit of measurement (UOM) is hours; the accumulative total 
counts from 00:00 August 1, 2007 (universal time). The 
vertical coordinate is ground-incident solar radiation, the 
UOM is W/m2. Figure 3(a) shows that when the value of 
ground-incident solar radiation is high, the value observed 
at ground level is greater than the satellite-inverted 
ground-incident solar radiation. This is probably because 
satellite observation covers a relatively large area while 
ground-based observation covers a very limited area, which 
can almost be considered a point. Therefore, the result of 
satellite inversion is closer to the mean state. Figure 3(b) is 
a scatter diagram of ground-incident solar radiation data 
observed at ground level and inverted by the FY2C satellite. 
Figure 3(c) is a histogram of the difference between 
ground-incident solar radiation data inverted by the FY2C 
satellite and observed at ground level. Both Figure 3(b) and 
(c) show that satellite-inverted values are higher than 
ground-observed values. Figure 3(c) also shows that under 
most circumstances the difference between satellite-inverted 
data and ground-observed data of solar radiation is ap-
proximately <50 W/m2.  

1.2.3  Atmospheric driving data set 

Temperature, humidity, atmospheric pressure, and wind 
speed that drive operation of the CLM3.0 land model were 
derived from interpolation of NCEP reanalysis data with 
1°×1° resolution and 6-h interval. These parameters were 
combined with precipitation and ground-incident solar radi-
ation data, with high spatial and temporal distribution in-
verted through geostationary satellite to form an atmos-
pheric forcing data set that drives the land model.  

In this paper, the data between July 2005 and June 2009 
were processed and then subject to quality control and veri-
fication. An atmospheric driving data set is generated 
(UOM of one month). Temporal resolution of the data set is 
1 hour, the horizontal resolution is 0.1°×0.1°, the spatial 
coverage is 15°–55°N, 75°–135°E, and the data format is 
NETCDF. This atmospheric driving data set was used in the 
China Soil Moisture Land Data Assimilation experiment 
described below. A 0.1°×0.1° atmospheric driving data set 
was used as the basic data. Data corresponding to assimila-
tion experiments with other spatial resolutions were derived 
through spatial interpolation of this atmospheric driving 
data.  

1.3  Land data assimilation method 

Evensen proposed a new solution to square root analysis [24] 
on the basis of standard EnKF [25]. It does not require ob-
servation disturbance in the calculation of analytic field sets 
and will thus reduce or eliminate sample error brought by 
observation disturbance. This algorithm also does not re-
quire additional assumptions or approximations in calcula-
tion of the analytic field structures. For example, it neither 
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requires the assumption that an observation is non-related to 
the disturbance of the state variable set, nor requires the 
inversion of the observation error covariance matrix. This 
algorithm simplifies calculation.  

Below are the traditional EnKF equations [24, 25]: 
(i) State error covariance matrix. Matrix defining the 

state of the set:  

 1 2( , , , ) ,n N
NA Rψ ψ ψ ×= ∈  (2) 

where ψi (i=1, …, N) is the member of the sample set, n is 
dimensionality of the state variable, N is the number of 
samples in the set.  

Matrix defining the disturbance of the set:  

 ( 1 ),NA A A A I′ = − = −  (3) 

wherein 1 .NA A=  

State error covariance matrix: 

 .
1

T
f A A

P
N

′ ′
=

−
 (4) 

Each element in matrix 1N is 1/N.  
(ii) Observation error covariance matrix. Given an ob-

servation ,md R∈  observation vectors of N disturbances 

are defined as follows:   

 , 1, , ,j jd d j Nε= + =  (5) 

 1 2( , , , ) ,m N
ND d d d R ×= ∈  (6) 

 1 2( , , , ) ,m N
NE Rε ε ε ×= ∈  (7)  

 ,
1

TEE
R

N
=

−
 (8) 

where m is dimensionality of the observation vectors.   
(iii) Analysis equation. 

 1( ) ( ),a f T f TA A P H HP H R D HA−= + + −   (9) 

where H is the operator (H may be non-linear, in which case 
HA=H(A)). 

Based on the update of the covariance matrix of the tra-
ditional Kalman filter analysis equation, a square root algo-
rithm was used to calculate the update of disturbance in the 
state variables of the set: 

 T T 1 ,a f f f fP P P H HP H R HP−= − +（ ）  (10) 

where H is the observation operator, P and R are the state 
error covariance matrix and observation error covariance 
matrix, respectively. The superscripts a, f and T represent 
analysis field, forecast field, and matrix transposition, re-
spectively. Suppose A and A′ are the state matrix and dis-
turbance matrix of the set, respectively. The state variable in 
this paper is soil volumetric moisture. Therefore, 

1 2( , , , ) .n N
NA Rθ θ θ ×= ∈  In addition, the observation 

vector md R∈  is set as the satellite-inverted soil moisture.  

Figure 3  Comparison between FY2C satellite-inverted and 
station observation surface incident solar radiation data. (a) 
Variation of surface incident solar radiation data with time. 
Surface observation is station observation data of surface 
incident solar radiation (green line). FY2C product is output 
of FY2C satellite-inverted surface incident solar radiation 
data (red line). (b) Scatter diagram of FY2C satellite-inverted 
data and ground-based observation data of surface incident 
solar radiation. (c) Difference between FY2C satellite-  
inverted data and station observation data of surface incident 
solar radiation (W/m2). 
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E is the observation disturbance set. Matrices are defined as 
S=HA′ and C=SST+(N−1)R. The algorithm was performed 
through the following steps: 

1) Calculate matrix C and decompose the characteristic 
values of C, i.e., ZΛZT=C; 

2) Update the mean value of the state variable set 
T 1 TΛa f fA S Z Z d Hθ θ θ−′= + −（ ）;  

3) Calculate Matrix 1/ 2 T
2 Λ ;X Z S−=  

4) Perform SVD decomposition T
2 2 2 2U V XΣ = ; 

5) Solve the disturbance of the analytic set of state varia-

bles T
2 2 2Σ Σ Θ,aA A V I′ ′= −  Θ  is any orthogonal matrix) 

and then add the mean value of the state variable set aθ  
calculated with eq. (2) to derive the analysis field Aa of the 
state variables.  

During the establishment of CLSMDAS, we first used a 
simple soil water module to establish a land near-surface 
soil moisture assimilation model based on the EnKF method, 
constructed a set of ideal near-surface observation data, and 
then performed an ideal simulation verification test to prove 
the accuracy and feasibility of the EnKF assimilation mod-
ule because only near-surface observation was available 
[21]. On the basis of this analysis, an EnKF assimilation 
module was coupled with the CLM3.0 model to establish 
CLSMDAS.  

1.4  AMSR-E soil moisture output 

The advanced microwave scanning radiometer (AMSR-E) 
carried by EOS/Aqua is the world’s first sensor capable of 
providing soil moisture service outputs at the global scale. 
These outputs have been applied widely in hydrological, me-
teorological, and climatic studies. The working frequencies of 
AMSR-E are 6.925, 10.65, 18.7, 23.8, 36.5, and 89 GHz.  

 The AMSR-E land parameters inversion algorithm is 
based on the radiation transfer model. Three major geo-
physical parameters are obtained through inversion: soil 
moisture me, vegetation moisture content we, and surface 
temperature Te. According to the relationship between the 
observed brightness temperatures and the geophysical vari-
ables related to the atmosphere, the model equation can be 
simplified to:  

 ( ),Bi iT x= Φ  (11) 

where x={xj}, xj are geophysical variables i.e., soil moisture, 
vegetation moisture content, and surface temperature; TBi is 
the brightness temperature observed through channel i; Φi(x) 
are standards for the functional relationship between pa-
rameters and the brightness temperature.  

AMSR-E brightness temperatures (Tbs) were first sub-
jected to projection treatment. Projected brightness Tbs is 
classified to make ensure it matches pixel points of the in-
version conditions. It is matched with auxiliary data. The soil 

moisture inversion process comprises: 1) Quality control of 
input data; 2) project re-sampling; 3) surface classification; 
4) eliminating data that do not meet inversion requirements; 
5) inversion; and 6) obtaining soil moisture [26].  

We downloaded and processed AMSR-E daily output data 
between 2004 and 2007 and used regular nationwide soil 
moisture observation data, detailed soil moisture observation 
data from Inner Mongolia and Henan Province, and 
AMSR-E inverted soil moisture data for a comparative 
analysis.  

Comparative analysis results showed that: 1) Both spatial 
and temporal variation in AMSR-E inverted soil moisture 
data was small; 2) the difference between AMSR-E inverted 
soil moisture and ground-based observed soil moisture was 
related significantly to level of soil moisture. The inverted 
soil moisture is more accurate in arid and semi-arid regions 
than in wet regions. This coincides with the theoretical 
analysis results; and 3) the difference between AMSR-E 
inverted soil moisture and ground-level data observed at 
Station 117 in Inner Mongolia was generally smaller than the 
differences at Station 115 in Henan. This is because obser-
vation points of Station 117 in Inner Mongolia were located 
mostly in grasslands and observation points in Henan were 
located mostly in farmlands. When there is high vegetation 
coverage, the soil moisture inversion capacity of microwaves 
is reduced. See ref. [27] for details.  

2  China Land Soil Moisture Data Assimilation 
experiment and results verification 

Single-point ecological station observations capture key 
atmospheric driving observation data, and surface and soil 
data. After CLSMDAS was established, first we used sin-
gle-point observation data acquired from ecological stations 
for the land soil moisture data assimilation experiment and 
analyzed the performance of this assimilation system. After 
the single-point soil moisture assimilation experiment, we 
prepared Chinese atmospheric driving field data with tem-
poral resolution of 1 hour and spatial resolution of 
0.25°×0.25° and AMSR-E inverted soil moisture data. We 
then performed the China soil moisture assimilation exper-
iment. In this section, the processes of the single-point and 
regional soil moisture assimilation experiments are de-
scribed and the results analyzed.   

2.1  Single-point land soil moisture data assimilation 
experiment  

Shouxian National Climatic Observation Station was locat-
ed by Huaihe River in the north of Anhui Province at 
116°47′E, 32°33′N. It has an average elevation of 23.5 m 
ASL. It is 25000 m2 in extent and belongs to Huanghuai 
Agricultural Ecological Observation Area. Data from 
Shouxian Observation Station were acquired between April 
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and June 2004. The temporal resolution of the observation 
data is 30 min. The atmospheric driving data include: at-
mospheric temperature, relative humidity at 2 m altitude, 
wind speed, atmospheric pressure and precipitation; surface 
short-wave radiation and 10 cm soil moisture data observed 
at ground level. The CLSMDAS established in this paper 
was used to carry out a soil moisture data assimilation sen-
sitivity experiment. In CLSMDAS, the state error covari-
ance matrix formed a state variable set by randomly dis-
turbing the state variables. Then eq. (4) was used to calcu-
late the state error covariance matrix. The observation error 
covariance matrix was calculated with eq. (8). The follow-
ing four soil moisture assimilation experiments were de-
signed (Table 1).  

Experiment 1: Alternate the model background error and 
observation error to assess effects of on assimilation results. 
The model background error was set at 0.03. In other words 
θi=θb(1+γ) was used to generate a sample set. γ was a ran-
dom value within [−0.03, 0.03]. Figure 4(a) shows time- 
variation curves of modeled, observed, and assimilated soil 
moisture when the observation error was set at 0.01 and 
0.03, respectively (empirical value is used in this paper). 
The assimilated soil moisture is closer to the observation 
data when the observation error is set at 0.01.  

Experiment 2: Change the size of the EnKF sample set 
and assess the effects of samples in the set on assimilation 
results. Figure 4(b) shows time-variation curves of modeled, 
observed, and assimilated soil moisture data when the 
number of samples in the set was set at 10, 20, and 50. The 
more samples the set contained, the closer the assimilation 
result became to observed data. Differences between the 
assimilation results of 10, 20, and 50 samples were not very 
significant.  

Experiment 3: Assess the effects of soil moisture depth 
on the assimilation results. Because the first layer of 
ground-observed soil moisture is the mean value of a 10 
cm-deep soil layer which covers the first four soil moisture 
layers in CLM3.0, we designed two experiments. The ob-
served soil moisture of the first layer was assimilated with 
the model first-layer soil moisture. The first-layer observed 
soil moisture (10 cm) was then divided into four layers and 
then assimilated with soil moisture data of the first four lay-
ers of the model for comparison. Figure 4(c) shows 
time-variation curves of the modeled, observed, and assimi-
lated soil moisture. There were major differences between 
the results of both assimilation schemes. The more the ob-
served soil moisture information, the closer to the observed 
results the assimilated soil moisture was.  

Experiment 4: Assess the effects of soil moisture fre- 
quency on assimilation results. The frequency of the obser-
vation data was set at once an hour, once a day or every 3 
days. Figure 4(d) shows time-variation curves of the mod-
eled, observed, and assimilated soil moisture data. The 
higher the frequency of the observation data, the closer the 
assimilation data became to the observed data. The lower 
the observation frequency, the closer the assimilation result 
became to the modeled result. Figure 4(e) and (f) are the 
time-variation curves of temperature and precipitation, re-
spectively, used during the above-mentioned experiments.  

2.2  China Land Soil Moisture Data Assimilation ex-
periment  

CLSMDAS was used to perform a number of experiments. 
The spatial extent of the assimilation experiment was 
15°–55°N, 75°–135°E. CLM3.0 was used as the land sur-
face model. FY2C satellite precipitation estimate data and 
FY2C ground-incident solar radiation data described in 1.2 
were used as the precipitation and radiation in the atmos- 
pheric driving data. Temperature, moisture, atmospheric 
pressure, and wind speed data were derived through inter- 
polation of NCEP reanalysis data. The observation data 
were AMSR-E inverted soil moisture data downloaded from 
NASA’s official website (http://nsidc.org/data/amsre/). 
EnKF assimilation was used as the assimilation method. 
The spatial resolution of soil moisture data was 0.25°×0.25° 
after assimilation. There were 10 layers in the vertical di-
rection. The classification of soil moisture layers was con-
sistent with that of the CLM3.0 model. The temporal inte-
gral step of the model was 30 min. The experiment in 2.1 
showed that the sum of the soil moisture values of the top-
most four layers in CLSMDAS was consistent in the physi-
cal significance of the 10 cm soil moisture data observed at 
ground level. Therefore, the output soil moisture data of the 
topmost four layers were combined and then processed into 
grid-point daily mean and monthly mean soil moisture data 
for further analysis. 

Analysis of the assimilation experiment between June 
and September 2006 shows that the CLSMDAS soil mois-
ture distribution is consistent with soil moisture observed on 
the ground. Due to insufficient available ground-level ob-
servation soil moisture data, the large error in observed soil 
moisture, and the inherent high variability of the spatial 
distribution of soil moisture, it is difficult to verify the as-
similated soil moisture data. The Drought and Flood Cli-
mate Bulletin is an authoritative output issued regularly by 

Table 1  Four soil moisture assimilation experiment schemes 

Experiment 
Background error 

(mm3/mm3) 
Observation error 

(mm3/mm3) 
Number of samples 

Observation frequency 
(h) 

Number of assimilation 
layers 

1 0.03 0.01/0.03 30 0.5 1 
2 0.03 0.01 10/20/50 0.5 1 
3 0.03 0.01 30 0.5 1/4 
4 0.03 0.01 30 0.5/24/72 1 
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Figure 4  Results of assimilation experiment at Shouxian in April–June, 2004. 

the National Climate Center. The climatic drought and flood 
distribution maps of this are drawn based on comprehensive 
analysis of station observation data observed. In this paper, 
the distribution map of ground soil moisture observation 
stations and the climatic drought and flood distribution map 
published by the National Climate Center were used to ana-
lyze the CLSMDAS soil moisture data (Figures 5 and 6).  

Figure 5(a) shows the CLSMDAS soil moisture on July 
18, 2006 and Figure 5(b) shows Chinese 10-cm deep soil 
moisture observations on July 18, 2006 (Figure 5(b)). Ac-
cording to the CLSMDAS soil moisture distribution map, 
soil moisture is relatively high in most southern regions. In 
Figure 5(b), there are few observation stations in the south, 
but all of these have high soil moisture. In the low soil 
moisture regions in eastern and central of Inner Mongolia, 
the observed and assimilated soil moisture were consistent. 
In the lower-soil-moisture regions in central China, the ob-
served and assimilated soil moisture data were also quite 
consistent.  

Figure 6 compares the Chinese assimilated soil moisture 
distribution and a Chinese drought and flood monitoring 
map published by the National Climate Center [27]. Ac-

cording to the China Drought and Flood Climate Bulletin 
published by the National Climate Center, the most serious 
summer drought since 1949 took place in Sichuan Province 
and Chongqing in August 2006. National climatic drought 
monitoring results from August 18 showed that the west of 
Chongqing and the east of Sichuan still remained in severe 
to extremely severe drought. The great majority of Sichuan, 
eastern Tibet, southwest Hubei, northwest Hunan, northern 
Guizhou, northern Xinjiang and southern Gansu and eastern 
Inner Mongolia remained in medium to severe drought. The 
east of Jiangnan, the great majority of northern China, and 
the east of northwest China had mild to medium droughts 
(http://climat.cma.gov.cn/). The CLSMDAS soil moisture 
distribution on August 18, 2006 showed significantly lower 
soil moisture values in drought regions of Chongqing and 
Sichuan than in surrounding regions. According to the Chi-
na Drought and Flood Climate Bulletin issued by the Na-
tional Climate Center, in September 2006 droughts persisted 
or developed in northern China, southern Chongqing, 
northern Guizhou and northern Xinjiang, and eastern Inner 
Mongolia. Different degrees of drought occurred in eastern 
Hubei and southern Guangxi. In the CLSMDAS monthly 
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Figure 5  Assimilated soil moisture distribution in China (a) and station observation soil moisture distribution (b). Unit in m3/m3. 

 

Figure 6  A comparison between Chinese assimilated soil moisture distribution ((a) August 2006, (c) September 2006; in m3/m3) and Chinese drought and 
flood monitoring map ((b) August 2006, (d) September 2006). 

mean soil moisture map of September 28, 2006, the low 
value centers of soil moisture are consistent with drought 
regions reported in the China Drought and Flood Climate 
Bulletin. It should be noted that the comparison between the 
Chinese assimilated soil moisture distribution map of China 
and the national climatic drought and flood distribution map 
published by National Climate Center is only qualitative 
because these two maps do not represent the same phe-
nomenon. The climatic drought and flood distribution map 
contains relative information integrating many conditions 

and climatic states. Although soil moisture is a physical 
quantity that most directly reflects droughts and floods, it 
does not appropriately reflect the drought and flood charac-
teristics of a certain region unless compared with climate 
data. For example, although soil moisture is very low in the 
great majority of southern Xinjiang, it is not defined as an 
arid region in the climatic drought and flood distribution 
map. Soil moisture is relatively high in normal years in Si-
chuan and Chongqing. Therefore, when it decreases signif-
icantly, it will be considered a sign of severe drought. 
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3  Summary and discussion 

The establishment of the CLSMDAS, especially the appli-
cation of high temporal and spatial resolution precipitation 
data acquired from the Chinese geostationary meteorologi- 
cal satellite FY2C, and ground-incident solar radiation data 
inverted with FY2C visible channal data in CLSMDAS, 
characterized the spatial and temporal distribution charac-
teristics of atmospheric forcing variables that drive the op-
eration of the land model, improved the simulation preci-
sion of the land model, and improved the soil moisture as-
similation results. The assimilated high-quality soil mois-
ture grid-point data serve as important basic information for 
monitoring climate changes, including droughts.  

One set of satellite-inverted soil moisture data was as-
similated. The inversion error introduced in the soil mois-
ture inversion was large and thus reduced the precision of 
the soil moisture assimilation results. In future research we 
will use the surface microwave radiation transfer model to 
conduct direct assimilation of satellite microwave channel 
radiation brightness temperature data to improve the preci-
sion of soil moisture assimilation. With regard to processing 
atmospheric driving data, we are currently using multi- 
source data fusion to interface the numerical model with 
surface and sounding regular observation data, and data 
recorded automatically at weather stations. We can then use 
this system to obtain surface atmospheric temperatures, at-
mospheric pressure, humidity, and wind speed grid-point 
data with high precision and high spatial and temporal dis-
tribution. By combination with precipitation and 
ground-incident solar radiation data obtained through geo-
stationary meteorological satellite inversion, we can con-
struct a more reasonable atmospheric driving data set and 
further improve the precision of land model simulation and 
assimilation.  
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