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[1] To overcome the difficulties in determining the optimal parameters needed for a
radiative transfer model (RTM), which acts as the observational operator in a land data
assimilation system, we have designed a dual-pass assimilation (DP-En4DVar) framework
to optimize the model state (volumetric soil moisture content) and model parameters
simultaneously using the gridded Advanced Microwave Scanning Radiometer–EOS
(AMSR-E) satellite brightness temperature data. This algorithm embeds a dual-pass (the
state assimilation pass and the parameter optimization pass) optimization technique based
on an ensemble-based four-dimensional variational assimilation method and a shuffled
complex evolution approach (SCE-UA). The SCE-UA method optimizes the parameters
using observational information, thereby leading to improved simulations. The RTM is
used to estimate brightness temperature from surface temperature and soil moisture. This
algorithm is implemented differently in two phases: the parameter calibration phase
and the pure assimilation phase. Both passes are applied in each assimilation time window
during the parameter calibration phase. However, only the state assimilation pass is used in
the pure assimilation phase after the parameters are determined during the parameter
calibration phase. Several experiments conducted using this framework coupled partially
with a land surface model (the NCAR CLM3) show that volumetric soil moisture
content can be significantly improved to be comparable with in situ observations by
assimilating only daily satellite brightness temperature. Furthermore, the improvement in
surface soil moisture also propagates to lower layers where no observations are available.
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1. Introduction

[2] As a lower boundary condition for numerical weather
and climate models, soil moisture is a crucial variable for
many hydrologic and climate studies. It strongly influences
the partitioning of surface available energy into sensible and
latent heat fluxes and hence the evolution of the lower
atmospheric conditions. Some studies [e.g., Chahine, 1992]
show that soil moisture’s effect on the atmosphere is
secondary only to that of sea surface temperature (SST)
on a global scale and even exceeds SST’s effect over land.
Accurate knowledge of spatial and temporal variations

of soil moisture is needed for weather predictions and
climate studies.
[3] Estimates of soil moisture can be obtained from

several sources: in situ measurements, land surface models
and satellite remote sensing. In situ measurements may be
most accurate for given locations; however, they are often
insufficient to represent large spatial variations in soil
moisture. Current state-of-the-art land surface models can
capture many of the spatial and temporal variations in soil
moisture, but model results generally contain mean biases
and may deviate from the true soil moisture evolution
because of uncertainties in model parameters, structures,
and input forcing data. There have been large efforts to
create estimates of soil moisture fields using land surface
models forced with realistic precipitation and other atmo-
spheric forcing data, such as the Global Soil Wetness
Project (http://grads.iges.org/gswp/) [Dirmeyer et al.,
1999], the North America Land Data Assimilation System
(NLDAS) [Mitchell et al., 2004], Global Land Data Assim-
ilation System (GLDAS) (http://ldas.gsfc.nasa.gov/), and
others [e.g., Nijssen et al., 2001; Qian et al., 2006; Sheffield
and Wood, 2008].
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[4] Low-frequency microwave brightness temperature
seen by satellites is strongly affected by near-surface soil
moisture content but not much by atmospheric states.
Because of this, low-frequency microwave data have been
used to retrieve soil moisture content [Jackson, 1993; Njoku
and Entekhabi, 1996; Shi et al., 1997; Owe et al., 2001;
Paloscia et al., 2001; Wigneron et al., 2003; Njoku et al.,
2003; Wen et al., 2003; Zhang et al., 2006]. Unfortunately,
remotely sensed soil moisture content still contains large
errors and needs to be improved greatly. Another way to use
the brightness temperature data is to assimilate them directly
into a land surface model to improve modeling of soil
moisture and thus the surface energy budget. Reichle et
al. [2001] investigated the feasibility of estimating large-
scale soil moisture profiles and related land surface varia-
bles from 1.4-GHz passive microwave measurements using
variational data assimilation. Crow and Wood [2003]
assessed the potential of assimilating surface brightness
temperature data into a TOPMODEL-based land surface
model using an ensemble Kalman filter (EnKF) method.
Seuffert et al. [2003, 2004] also tested two different soil
moisture systems based on a simplified extended Kalman
filter (EKF) method and an optimal interpolation (OI)
method using screen-level parameters and 1.4-GHz micro-
wave brightness temperature. The two systems gave similar
results compared to observed gravimetric soil moisture and
surface heat fluxes. Recently, Yang et al. [2007a, 2007b]
proposed a land surface assimilation system to assimilate
AdvancedMicrowave Scanning Radiometer–EOS (AMSR-E)
brightness temperatures of vertical polarization at 6.9 GHz
and 18.7 GHz. However, only surface soil moisture is
optimized in their assimilation system, which uses an
iterative assimilation technique. Here we propose an assim-
ilation framework that can improve the soil moisture
profiles considerably by assimilating the gridded brightness
temperature data, even though the satellite observations are
only for the skin soil layer.
[5] How to fully use the microwave brightness tempera-

ture data for the top-few-centimeter soils to improve esti-
mates of the soil moisture profiles is a difficult inverse
problem. For some regions, this may not be achievable
simply because surface soil moisture is not physically
correlated with subsurface moisture content in these
regions. For many other areas, land data assimilation
provides an effective way to this problem by merging the
information from remote sensing and models. In land data
assimilation, Kalman filter methods, such as the extended
Kalman filter (EKF) [Entekhabi et al., 1994] and ensemble
Kalman filter (EnKF) [e.g., Evensen, 1994, 2003; Kalnay et
al., 2007; Beezley and Mandel, 2008; Tian and Xie, 2008],
are the most frequently used data assimilation algorithms.
Different assimilation algorithms based on the EKF or
EnKF method have been used to estimate soil moisture
profiles using satellite observations of near-surface soil
moisture content [Houser et al., 1998; Reichle et al., 2001;
Crow and Wood, 2003; Reichle and Entekhabi, 2001;
Reichle et al., 2002a, 2002b]. Among them, Entekhabi et
al. [1994] first used the EKF technique to retrieve 1-m soil
moisture profiles and compared them with other estimates.
Walker et al. [2001] compared two assimilation schemes,

namely the direct insertion and EKF, in the context of
retrieval rates. Reichle et al. [2002a] applied the EnKF to
the retrieval problem of soil moisture distributions by
assimilating synthetic surface brightness temperatures.
[6] On the other hand, the need for a linear version of the

forecast model in the four-dimensional variational data
assimilation (4DVar) method severely limits its application
in soil moisture data assimilation because of the high
nonlinearity in the soil water hydrodynamic equation
[Reichle and Entekhabi, 2001; Reichle et al., 2002a,
2002b]. Recently, this issue was addressed by Tian et al.
[2008a] using an ensemble-based explicit 4DVar method
(referred to as En4DVar hereafter). Here, we design a dual-
pass framework to optimize the soil moisture profile by
assimilating AMSR-E microwave brightness temperature
(Tb) data into a soil water hydrodynamic model. A radiative
transfer model (RTM) is taken as the observational operator
in this framework to provide a link between the forecast
model and observational variables and to estimate Tb from
surface temperature and soil moisture. The soil moisture
profile is assimilated by the En4DVar method in the state
assimilation pass. Simultaneously, several key parameters in
the RTM are also optimized using the shuffled complex
evolution approach (SCE-UA) from Duan et al. [1993] in
the parameter optimization pass to account for their high
variability or unavailability. This kind of dual-pass techni-
ques have previously been implemented within the Kalman
filter framework [Moradkhani et al., 2005a, 2005b; Vrugt et
al., 2005; Tian and Xie, 2008; Tian et al., 2008b] and also in
a variational system [Yang et al., 2007a, 2007b].
[7] Preliminary assimilation results show that soil mois-

ture calculated through this dual-pass variational assimila-
tion framework coupled partially with the Community Land
Model version 3 (CLM3) [Oleson et al., 2004; Dickinson et
al., 2006] is significantly improved to be comparable with
in situ soil moisture observations by assimilating only daily
satellite brightness temperatures. Moreover, the improve-
ment is seen not only in the skin layer, but also, to a
considerable extent, in lower layers where no observational
data are available for assimilation. Thus, the whole soil
moisture profile can be improved by assimilating micro-
wave brightness temperatures of the top few centimeters.
This provides a promising solution for soil moisture
assimilation for uses in climate, hydrologic, and weather
applications.

2. A Dual-Pass Variational Assimilation
(DP-En4DVar) Framework

[8] The dual-pass assimilation framework consists of a
soil water hydrodynamic model used in the CLM3 to
calculate soil moisture, a radiative transfer model (RTM)
to estimate microwave brightness temperature (Tb), and a
dual-pass variational assimilation algorithm to simulta-
neously optimize the state variable and the parameters using
brightness temperature data from satellite observations. This
assimilation framework is somewhat similar to Yang et al.
[2007a, 2007b]. However, they differ from each other
significantly in two aspects: 1. The forecast operator used
in our framework is 1-D soil water equation model used in
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the NCAR Community Land Model (CLM) [Oleson et al.,
2004; Dickinson et al., 2006], while a simple biosphere
model (SIB2) [Sellers et al., 1996] is adopted in Yang et al.
[2007a, 2007b]; and 2. an ensemble-based explicit 4DVar
method [Tian et al., 2008a] is used to assimilate brightness
temperature into soil moisture estimation in the assimilation
pass in this study, whereas Yang et al. [2007a] used a
variational assimilation approach based on an iterative
technique in its assimilation procedure.

2.1. Soil Water Hydrodynamic Model

[9] The volumetric soil moisture (q) for 1-D vertical
water flow in a soil column in the CLM is expressed as

@q
@t

¼ � @q

@z
� E � Rfm; ð1Þ

where q is the vertical soil water flux, E is the roots’
evapotranspiration rate, and Rfm is the melting (negative) or
freezing (positive) rate, and z is the depth from the soil
surface. Both q and z are positive downward.
[10] The soil water flux q is described by Darcy’s law

[Darcy, 1856]:

q ¼ �k
@ 8þ zð Þ

@z
; ð2Þ

where k = ks(q/qs)
2b+3 is the hydraulic conductivity, and 8 =

8s(q/qs)
�b is the soil matrix potential, ks, 8s, qs and b are

constants. The CLM computes soil water content in the
10 soil layers through (1–2) (see Oleson et al. [2004] for
details). The upper boundary condition is

q0 tð Þ ¼ �k
@ 8þ zð Þ

@z

���
z¼0

; ð3aÞ

where q0(t) is the water flux at the land surface (referred to
as infiltration), and the lower boundary condition is ql = 0.
The time step Dt is 1800 s (0.5 h).

2.2. Radiative Transfer Model

[11] Following Yang et al. [2007b], the microwave bright-
ness temperature (Tb) can be estimated using

Tb;p qð Þ ¼ Tg 1� Gq qð Þ
� �

exp �tcð Þ þ Tc 1� wð Þ 1� exp �tcð Þ½ �
� 1þ Gp qð Þ exp �tcð Þ
� �

; ð3bÞ

where the subscript p(q) denotes vertical (horizontal)
polarization, Gp(q) is soil reflectivity, Tg is ground
temperature, Tc is canopy temperature, tc is the optical
thickness of the vegetation, and w is the single-scattering
albedo of the vegetation. The soil reflectivity can be
calculated using a Q-h model [Wang and Choudhury, 1981]
or a Q-p model [Shi et al., 2005]; we use the Q-h model
here. The soil reflectivity can be written as

Gp qð Þ ¼ 1� Qð Þ 	 Rp qð Þ þ Q 	 Rq pð Þ
� �

exp �hð Þ; ð4Þ

where Q and h are empirically determined surface rough-
ness parameters, and R is the Fresnel power reflectivity that
describes the soil reflectivity of a smooth surface.

[12] The vertical (Rp) and horizontal (Rq) Fresnel power
reflectivities are calculated using

Rp ¼

����� cos q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 q

p
cos qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 q

p
�����
2

ð5aÞ

Rq ¼

����� er cos q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 q

p
er cos qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 q

p
�����
2

; ð5bÞ

where q is the incident angle and er is the soil dielectric
constant, which is calculated following Dobson et al.
[1985]:

er ¼ 1þ 1� wsð Þ eas � 1
� �

þ wbeafw � w
h i1=a

; ð6Þ

where ws is the soil porosity, w is the surface soil water
content, es = (4.7,0.0) is the dielectric constant of a very dry
soil, efw (
81) is the dielectric constant of free water, a =
0.65, and b is a soil texture–dependent coefficient [Ulaby et
al., 1986]:

b ¼ 1:09� 0:0011� Ps þ 0:0018� Pc; ð7Þ

where Ps and Pc are the percentage of sand and clay in the
soil, respectively.
[13] The model parameters in equations (3a), (3b) and (4)

are frequency-dependent and are given by

h ¼ k 	 Sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
0:1 cos q

p
; ð8Þ

Q ¼ Q0 k 	 Sð Þ0:795; ð9Þ

tc ¼ b0 100lð Þcwc= cos q; ð10Þ

w ¼ 0:00083=l; ð11Þ

where l is the wavelength in meters, k is the wave number
defined as 2p/l, S is the standard deviation of surface
height, wc is the vegetation water content in kg m�2, and
Q0, b

0, and c are empirical coefficients.
[14] Equation (8) follows Wegmuller and Matzler [1999],

while equation (9) follows Jackson and Schmuge [1991]
and equations (10) and (11) follow Yang et al. [2007b]. The
value of c depends on vegetation type (leaf dominated,
stem-dominated, or grass), and Jackson and Schmuge
[1991] suggest a value of �1.08 for stem-dominated and
�1.38 for leaf dominated.
[15] The vegetation water content is estimated following

Paloscia and Pampaloni [1988]:

wc ¼ exp LAI=3:3ð Þ � 1; ð12Þ

where LAI (in meters squared per meters squared) is the leaf
area index.
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[16] Given the needed parameters, the RTM estimates
microwave brightness temperature (Tb) from the inputs of
surface soil moisture content, ground temperature and
canopy temperature. Several parameters (namely, S, Q0,
and b0) in the RTM significantly affect the outputs while
their values are either highly variable or unavailable. How
to obtain accurate values for parameters (S, Q0, b

0) is critical
to the accuracy of the RTM’s outputs and thus the perfor-
mance of this variational assimilation framework. This issue
is addressed further below.

2.3. Three Dual-Pass Variational Assimilation
(DP-En4DVar) Algorithms

[17] Figure 1 shows the flowchart of our dual-pass
assimilation algorithm, which embeds a dual-pass optimi-
zation technique. This algorithm is implemented differently
in the parameter calibration phase and the pure assimilation
phase. Both the state assimilation pass and the parameter
optimization pass are used in the parameter calibration
phase in each assimilation time window in order to obtain
the optimal parameters for the RTM. However, only the
state assimilation pass is used in the pure assimilation phase
after the parameters are determined during the parameter
calibration phase. Both passes assimilate observed bright-
ness temperature of the vertical polarization at a lower
(6.9 GHz) and a higher frequency (18.7 GHz). This is
critical for producing stable and reliable estimates of soil
moisture [Yang et al., 2007b]. The vertical polarization is
more desirable than the horizontal polarization because it is
relatively insensitive to vegetation coverage [Fujii, 2005].
[18] Keeping all the parameters constant in the state

assimilation pass, the soil moisture profile can be assimi-
lated by the En4DVar method (see Tian et al. [2008a] for
more details) using observed brightness temperature in each
assimilation time window. In this method, as in the tradi-
tional implicit 4DVar analyses, the state variable xa (soil
moisture content in this study) is obtained through the
minimization of a cost function J that measures the misfit
between the model trajectory Hi(xi) and the observation yi at
a series of times ti, i = 0, 1, 	 	 	, m:

J x0ð Þ ¼ x0 � xbð ÞTB�1 x0 � xbð Þ þ
Xm
i¼0

yi � Hi xið Þ½ �T

	 R�1
i yi � Hi xið Þ½ �; ð13Þ

with the forecast model M0!i imposed as strong constraints,
defined by

xi ¼ M0!i x0ð Þ; ð14Þ

where the superscript T stands for a transpose, xb is a
background value, index i denotes the observational time,
Hi is the observational operator, and matrices B and R are
the background and observational error covariances,
respectively. In our assimilation framework, the forecast
model M0!i is the soil water hydrodynamic model
(section 2.1) and the observational operator Hi is the RTM
(section 2.2), respectively. The RTM actually establishes a
mapping between the forecast state space (soil moisture
content q, calculated by the soil water hydrodynamic model)

and the observational variable space (observed brightness
temperature, i.e., yi = (Tb,i

6.9V, Tb,i
18.7V)T in (13)). The control

variable is the initial conditions x0(q(t0)) at the start of the
assimilation time window) of the model. In the cost function
(13), the control variable x0 is connected with xi through
forwarding the model (14) and expressed implicitly, which
makes it difficult to compute the gradient of the cost
function with respect to x0. The following method, first
proposed by Tian et al. [2008a], simplifies this problem.
[19] Assuming there are S time steps within the assimi-

lation time window (0, T). We first generate N random
perturbation fields using the Monte Carol method and add
each perturbation field to the initial background field at t =
t0 to produce N initial fields xn(t0), n = 1, 2, 	 	 	 N. We then
integrate the forecast model xn(ti) = Mi (xn(ti�1)) with the
initial fields xn(t0)(n = 1, 2, 	 	 	 N) throughout the assimi-
lation time window to obtain the state series xn(ti) (i = 0, 1,
	 	 	 S � 1) and then construct the perturbed 4-D fields
(snapshots) Xn (n = 1, 2, 	 	 	 N) over the assimilation time
window:

Xn ¼ xn t0ð Þ; xn t1ð Þ; 	 	 	 ; xn ts�1ð Þð Þ; n ¼ 1; 2 	 	 	N : ð15Þ

All the perturbed 4-D fields Xn (n = 1,2, 	 	 	 N) can expand a
finite (�N) dimensional space W(X1X2 	 	 	XN

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
). Similarly,

the analysis field xa(ti) (i = 0, 1, 2, 	 	 	 S � 1) over the same
assimilation time window can also be stored into the
following vector:

Xa ¼ xa t0ð Þ; xa t1ð Þ; 	 	 	 ; xa tS�1ð Þð Þ: ð16Þ

When the ensemble size N is increased by adding random
samples, the ensemble space could cover the analysis vector
Xa, i.e., Xa is approximately assumed to be in this linear
space W. Then the analysis vector Xa can be expressed by
the linear combinations of the base vectors of the space W
since it is in this space.
[20] How to obtain the appropriate base vectors remains

the only task left. We found that the POD technique is a
good choice for doing this. It can produce a set of base
vectors spanning the ensemble of data in certain least
squares optimal sense [Ly and Tran, 2001, 2002].
[21] We form N new ensemble members by focusing on

deviations from the vector Xi, (i = 1, 	 	 	, N), respectively, as
follows:

dXni ¼ Xn � Xi; n ¼ 1; 	 	 	 ;N ; ð17Þ

which form the matrixes Ai (M � N).
[22] Using the proper orthogonal decomposition (POD)

technique [e.g., Ly and Tran, 2001, 2002; S. Volkwein,
unpublished manuscript, 2008] (available from http://
www.uni-graz.at/imawww/volkwein/publist.html) to com-
pute the POD models (base vectors, fj

i (j = 1, 	 	 	, Pi))
of Ai, the truncated reconstruction of the analysis ensemble
in the four dimensional space Xa

i is given by

Xi
a ¼ Xi þ

XPi

j¼1

ai
j8

i
j; ð18Þ
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Figure 1. Algorithmic flowchart of the dual-pass variational assimilation framework.
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where Pi (the number of the POD modes of Ai) is defined by
Tian et al. [2008a].
[23] Given the vector of measurements Y = (y0, y1, 	 	 	, ym)T,

we can define the N vectors with perturbed observations
as

Yi ¼ Y þ Ei; i ¼ 1; 	 	 	 ;N ; ð19Þ

where Ei = (ei,0, ei,1, 	 	 	, ei,m)T are random real vectors. The
measurement error covariance matrix can be estimated
using

Rj ¼
EjE

T
j

N � 1
; j ¼ 0; 	 	 	m; ð20Þ

where Ej = (e1,j, 	 	 	, eN,j).
[24] The cost function (13) can now be reformulated as

follows:

Ji x0ð Þ ¼ x0 � xbð ÞB�1 x0 � xbð Þ þ
Xm
j¼0

yji � Hj xj
� �h iT

	 R�1
j yji � Hj xj

� �h i
; ð21Þ

where Yi = (y0i, 	 	 	, ymi).
Substituting (18) into (21), the control variable becomes
ai = (a1

i , 	 	 	, ai
Pi
)T instead of x(t0) and then the analysis

ensemble X
i

a (i = 1, 	 	 	, N) can be easily obtained. The
mean analysis state is then generated as follows:

Xa ¼
1

N

XN
i¼1

Xi
a: ð22Þ

The ensemble initial A0 for the next assimilation cycle is
constructed by

A0 ¼ x1a tS�1ð Þ; 	 	 	 ; xNa tS�1ð Þ
� �

; ð23Þ

and the background error covariance B can be updated by
the evolving analysis ensemble forecasts (so it is flow-
dependent), as follows:

B ¼ DA0 DA0ð ÞT

N � 1
; ð24Þ

where xa
* ( t S�1) = 1

N

PN
n¼1

xa
n ( t S�1 ) and DA0 =

x1a tS�1ð Þ � x*a tS�1ð Þ; . . . ; xNa � x*a tS�1ð Þ
� �

.
[25] Equations (23) and (24) are used to drive next

assimilation cycle, which indicates that the initial condition
is perturbed only once throughout the whole assimilation in
this new scheme formulation.
[26] Assimilated soil moisture content obtained from pass

1 (the state assimilation pass, Figure 1) is then passed into
pass 2 (the parameter optimization pass) for parameter
calibration in the same assimilation cycle. The cost function
for pass 2 can be defined as follows:

F ¼
Xm
i¼0

T
h;V
b;est � T

h;V
b;obs

� �2

þ T
l;V
b;est � T

l;V
b;obs

� �2
� �

; ð25Þ

where the subscripts obs and est denote the observed and
modeled values, respectively. The parameters (S, Q0, b

0) are
optimized in pass 2. The SCE-UA global minimization
method [Duan et al., 1993] is adopted to search for the
optimal values of the parameters. To minimize the effects of
the initial values on the final optimized results, we assign
the initial values of the parameters randomly in their value
ranges at the start of each assimilation time window. The
final optimized values are the averages of all the optimized
values from each assimilation cycle during the parameter
calibration phase. Once the parameters are optimized
through the parameter calibration phase, the parameter
optimization pass is turned off.

3. Numerical Experiments

[27] In this section, the new dual-pass variational assim-
ilation framework is implemented and evaluated through a
case study at a reference site located in Inner Mongolia.

3.1. Observational Data

[28] As shown in Figure 2, the reference site is centered at
(112.5�E, 40.5�N) in Inner Mongolia. This site covers a flat
area of about 0.65� latitude � 0.65� longitude in a semiarid
grassland, where three automated stations (i.e., ZhuoZishan,
LiangChen, and FengZhen) for soil hydrology were
deployed. At these stations, soil moisture content was
measured for three layers from 0 to 10 cm, 10 to 20 cm,
and 40 to 50 cm on the 8th, 18th, and 28th days of each
month from 8 March to 8 November 2006. This observed
volumetric soil moisture data set is suitable for evaluating
data assimilation as it is independence of the microwave
brightness temperature data.
[29] A common issue is how to compare in situ point

measurements with assimilated soil moisture averaged over
a grid box of satellite observations. Soil moisture measured
at a single point is often representative merely on a limited
spatial scale, depending on heterogeneity of soil properties,
land cover, and atmospheric conditions. Figure 3 shows that

Figure 2. Map of the reference site. The grid of dashed
lines is centered at (112.5�E, 40.5�N).
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time series of daily volumetric soil moisture from observa-
tions at the three stations differ significantly even though
they are close to each other. To reduce the scale mismatch,
we used the arithmetic mean of the observed soil moisture
contents from the three stations as a proxy for the mean state
of this reference site, which approximately matches the
collocated grid box (
0.6� latitude � 0.6� longitude cen-
tered at 112.48�E, 40.49�N) from the satellite observations.
[30] The AMSR-E satellite brightness temperature data

(daily) from 1 January to 31 December 2006 used in this
study was downloaded from https://wist.echo.nasa.gov/api/
(more information about the AMSR-E satellite data can be
found at http://www.ghcc.msfc.nasa.gov/AMSR/).

3.2. Numerical Experiments

[31] We ran the CLM3, a comprehensive land surface
model described in detail by Oleson et al. [2004] and
Dickinson et al. [2006], with observation-based atmospheric
forcing from Qian et al. [2006] and Shi [2008]. These
simulations were described elsewhere [Tian et al., 2007;
Shi, 2008] and they were used in this case study to derive
the infiltration, ground temperature, surface soil temperature
and canopy temperature (Figure 4) for forcing the dual-pass
variational assimilation framework. In this sense, we cou-
pled our assimilation framework with the CLM3 partially.
[32] The CLM3 simulation was first forced with the

3-hourly forcing data from 1973 to 2004 extracted from the
global forcing data set created by Qian et al. [2006] during a

50-year spin-up run from the start-up file of Qian et al.
[2006] to obtain an equilibrium state. From this state,
the CLM3 was forced by a high-resolution (hourly and
0.2� latitude � 0.2� longitude) data set over China created
by Shi [2008] from 1 January to 31 December 2006 to obtain
1-year time series of simulated infiltration (= precipitation –
evapotranspiration – surface runoff – interception by
vegetation), ground temperature and vegetation temperature
(Figure 4) for driving the dual-pass variational assimilation
framework. This high-resolution forcing data set was
developed by integrating observed precipitation, air temper-
ature and other fields from about 2000 automated weather
stations in the China Meteorological Administration (CMA)
operational network. This high-resolution forcing data set
has been successfully used in land data assimilation [Shi,
2008]. The assimilation time window in this study is 1 day
(48 time steps) and the sampling frequency of the satellite
observed brightness temperature is once per day. We used
the 3 months from June to August 2006 as the parameter
calibration phase to calibrate the three parameters (S, Q0, b

0)
for the Q-h model to avoid snow cover at this reference site
during the calibration period. Of course, longer calibration
phase is more suitable for a reliable and robust parameter
value. However, in this study, the length of the calibration
phase is limited by the observations available. In fact, we
first use the whole year (not only the 3 months) observa-
tions for calibrating. Its results are very similar with those
using the 3 months (not shown). This conclusion is not

Figure 3. Time series of daily volumetric soil moisture (meters cubed per meters cubed) for the (a) top
(0–10 cm), (b) second (10–20 cm), and (c) third (40–50 cm) layers from observations at the three
stations (ZhuoZishan, LiangChen, and FengZhen) and their averages, respectively.
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absolute and case-dependent. Anyway, more observations
and longer calibration phase are needed in the future.

3.3. Experimental Results

[33] Figure 5a shows the time series brightness temper-
atures observed at two frequencies (6.9 and 18.7 GHz) from
vertical (V) and horizontal (H) polarization that were used
in this assimilation experiment. Figures 5b–5d show the
time series of assimilated using vertical and horizontal
polarization measurements, simulated and observed daily
soil moisture content in the top layer (0–10 cm), the second
layer (10–20 cm) and the third layer (40–50 cm) from
1 January to 31 December 2006. The assimilated daily soil
moisture using vertical polarization measurements is capa-
ble of reproducing the temporal evolution of observed soil
moisture, in terms of both its amplitude and seasonal phase.
The correlation with the observed soil moisture is 0.59 for
the assimilated (using V polarization measurements) and
0.01 for the simulated soil moisture in the three topsoil
layers. It is encouraging that, to a considerable extent, this
soil moisture improvement further propagates to lower layers
where satellite observations are unavailable (Figures 5c and
5d). This results in considerable improvement to the whole
modeled soil moisture profiles (Figures 5b–5d). Certainly,
the deeper the soil layer depth, the less the improvement
(Figures 5c and 5d). This is expected because the observa-
tional information is only available for the skin layer. On the
contrary, Figures 5b–5d show that the CLM3-simulated soil

moisture deviates from (underestimates) the observations
significantly since day 110, even though it performs fairly
well during the initial stage from day 1 to day 110 or so. The
final forcing to drive the 1-D soil water model is the
infiltration, which is calculated by the CLM3 and heavily
affected by the atmospheric forcing including the precipi-
tation and the temperature data. The errors in the atmo-
spheric forcing probably make the simulated soil moisture
underestimates the observations significantly since day 110.
According to Fujii [2005], the H polarization is more
sensitive to vegetation coverage while vertical polarization
is not so. Vegetation affects the H polarization so much
that little useful information can be extracted from the
H polarization measurements for assimilating soil moisture.
As a result, the assimilated daily soil moisture using the
H polarization measurements has little temporal variability
and cannot catch the observed variations in observed soil
moisture (Figures 5b–5d).
[34] To investigate the impacts of the ensemble size of the

En4DVar method on the assimilated results, we designed
another group of experiments to test its sensitivity. Three
ensemble numbers are adopted: N = 100, 60, and 30,
respectively. Figure 6 shows the time series of observed,
CLM3-simulated, and three assimilated (Ass1 for N = 100,
Ass2 for N = 60, and Ass3 for N = 30, respectively) daily
soil moisture content in the top layer (0–10 cm) and the
second layer (10–20 cm). It is obvious that the two
assimilated (Ass1 and Ass2) soil moisture time series are

Figure 4. Time series of CLM3-simulated infiltration, ground temperature, and canopy temperature at
this reference site from 1 January to 31 December 2006.
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Figure 5. (a) Time series of daily Advanced Microwave Scanning Radiometer–EOS microwave
brightness temperature (from vertical polarization and horizontal polarization) from 1 January to
31 December 2006, and the daily volumetric soil moisture (in meters cubed per meters cubed) for the
(b) top (0–10 cm), (c) second (10–20 cm), and (d) third (40–50 cm) layers from observations (dots), the
CLM3 simulation (long-dashed line), and the dual-pass assimilation framework using vertical
polarization measurements (solid line) and using horizontal polarization measurements (short-dashed
line) at the study site.
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almost the same; however, the assimilated soil moisture
with N = 30 (Ass3) is somewhat different with the other
two. We also tested another larger ensemble size N = 200
(not shown), whose assimilated results are similar to Ass1
and Ass2. On the basis of these results, we conclude that
60 ensembles of random perturbations are probably enough
in our framework.

4. Summary and Concluding Remarks

[35] To overcome the difficulties in determining the
optimal parameters needed for a radiative transfer model
(RTM), which acts as the observational operator in a land
data assimilation system, we have designed a dual-pass
assimilation (DP-En4DVar) framework to optimize the
model state (volumetric soil moisture content) and model
parameters simultaneously using the gridded AMSR-E
satellite brightness temperature data. This algorithm embeds
a dual-pass (the state assimilation pass and the parameter
optimization pass) optimization technique based on an
ensemble-based four-dimensional variational assimilation
method and a shuffled complex evolution approach
(SCE-UA). The SCE-UA method optimizes the parameters
using observational information, thereby leading to improved
simulations. This algorithm is implemented differently in

two phases: the parameter calibration phase and the pure
assimilation phase. Both passes are applied in each assim-
ilation time window during the parameter calibration phase.
However, only the state assimilation pass is used in the pure
assimilation phase after the parameters are determined
during the parameter calibration phase.
[36] Numerical experiments for a site in northern China

for 2006 performed with this framework partially coupled
with the NCAR CLM3 show that this dual-pass variational
assimilation framework performs reasonably well and better
than the pure CLM3 simulations forced with observed
precipitation and other atmospheric forcing. It has the
ability to reproduce the soil moisture evolution, with the
amplitude and seasonal phase comparable to observed. It is
also encouraging that the improvement in the assimilated
soil moisture for the top 10-cm layer also propagates to
lower layers, even though the satellite brightness tempera-
ture observations are available only for the skin soil layer.
We also investigate the impacts of ensemble size N on the
assimilated results and found that N = 60 is already enough
to accomplish this assimilation task well.
[37] It should be pointed out that we did not incorporate

this dual-pass variational assimilation framework into the
Community Land Model (CLM3) fully in this study. How
to develop an integrated global land data assimilation

Figure 6. Time series of daily volumetric soil moisture (in meters cubed per meters cubed) from
1 January to 31 December 2006 from observations (dots), the CLM3 simulation, and the dual-pass
assimilation framework with the ensemble sizes N = 100 (Ass1), N = 60 (Ass2), and N = 30 (Ass3) for the
(a) top (0–10 cm) and (b) second (10–20 cm) soil layers.
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system using satellite microware data based on this assim-
ilation framework and the CLM3 or other land models is a
still nontrivial task for future research.
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