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Abstract  Land surface models are often highly nonlin-
ear with model physics that contain parameterized discon-
tinuities. These model attributes severely limit the appli-
cation of advanced variational data assimilation methods 
into land data assimilation. The ensemble Kalman filter 
(EnKF) has been widely employed for land data assimila-
tion because of its simple conceptual formulation and 
relative ease of implementation. An updated ensem-
ble-based three-dimensional variational assimilation 
(En3-DVar) method is proposed for land data assimilation. 
This new method incorporates Monte Carlo sampling 
strategies into the 3-D variational data assimilation 
framework. The proper orthogonal decomposition (POD) 
technique is used to efficiently approximate a forecast 
ensemble produced by the Monte Carlo method in a 3-D 
space that uses a set of base vectors that span the ensem-
ble. The data assimilation process is thus significantly 
simplified. Our assimilation experiments indicate that this 
new En3-DVar method considerably outperforms the 
EnKF method by increasing assimilation precision. Fur-
thermore, computational costs for the new En3-DVar 
method are much lower than for the EnKF method.   
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1  Introduction  
Numerical weather or climate prediction in meteorol-

ogy uses the power of computers to make weather or cli-
mate forecasts. Data assimilation provides a framework 
for merging observational and meteorological model es-
timates to improve weather and climate predictions. Many 
simple data assimilation methods, such as the polynomial 
fitting method (Panofsky, 1949), the successive-correction 
method (SCM) (Bergthorsson et al., 1955; Cressman, 
1959) and optimal interpolation (OI) (Gandin, 1963), 
have been proposed since numerical weather predictions 
were first introduced. In recent years, many advanced data 
assimilation methods, such as the four-dimensional varia-
tional assimilation (4-DVar) method (Courtier, 1997; 
Zheng, 2003; Kalnay, 2005; Tian et al., 2008a; Wang and 
Li, 2009), the extended Kalman filter (EKF) (Miller et al., 
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1994; Zheng, 2003; Kalnay, 2005) and the ensemble  
Kalman filter (EnKF) (Evensen, 1994; Kalnay, 2005), 
have been developed and applied to data assimilation in 
the atmospheric and oceanographic sciences. In contrast, 
data assimilation in the land surface and hydrological 
sciences was not established as a distinct field until the 
mid-1990s. Since that time, land data assimilation has 
become an increasingly active field with pioneering stud-
ies. Assimilating microwave remote sensing data with 
“off-line” land surface models has become the predomi-
nant characteristic of land surface data assimilation. 
Based on the assumption that land surface observational 
techniques and analytical methods are sufficiently ad-
vanced, an accurate description of land surface states and 
fluxes can be produced by assimilating remote sensing 
data or in situ observations in a data assimilation frame-
work. For land surface data assimilations, the EnKF 
method is probably the most frequently used optimization 
algorithms because of its simple conceptual formulation 
and relative ease of use (Evensen, 2003, 2007; Tian and 
Xie, 2008; Tian et al., 2008b; De Lannoy et al., 2007). 
There are also variational assimilation methods (Yang et 
al., 2007) that have been tested in land surface data as-
similation. It is well known that land surface models are 
usually highly nonlinear and that model physics also con-
tain parameterized discontinuities, which limits their ap-
plication (Mu and Wang, 2003).  

In this study, an updated ensemble-based three-dimen- 
sional variational assimilation (En3-DVar) method is 
proposed that merges Monte Carlo methods and proper 
orthogonal decomposition (POD) techniques into the tra-
ditional 3-DVar method to simplify data assimilation. This 
method is similar to Tian et al. (2008a), but is reduced to 
the 3-D case for the purpose of land surface data assimila-
tion. The ensemble members in Tian et al. (2008a) are 
constructed by forecast states at selected time points over 
the assimilation time window, while they are obtained 
only at a single time point in the current method. The ba-
sic idea of the POD technique is to start with an ensemble 
of data, called snapshots, collected from an experiment or 
a numerical procedure of a physical system. The POD 
technique is then used to produce a set of base vectors, 
which span the snapshot collection. The goal of the tech-
nique is to represent the ensemble of the data in terms of 
an optimal coordinate system. That is, the snapshots can 
be generated by the smallest possible set of base vectors. 
We conducted several numerical experiments using 
one-dimensional (1-D) soil water equations and synthetic 
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observations to evaluate our method in land surface data 
assimilation. Comparisons were also made between our 
method and the EnKF method. We found that our new 
En3-DVar method outperformed the EnKF method by 
increasing the assimilation precision and reducing com-
putational costs. 

2  Methodology 
In principle, the traditional 3-DVar analysis xa is ob-

tained by minimizing a cost function, J, that measures the 
misfit between model trajectory, H(x), and the observation, 
y, as follows: 

T 1 T 1
b b(x) ( ) ( ) ( ( )) ( ( )),J x x x x y H x y H x− −= − − + − −B R  

(1) 
with the forecast model M imposed as a strong constraint, 
and defined as:  

1( ) ( )k kx t M t −= ,              (2) 
where t is the time, the superscript, T, stands for a trans-
posed, and b, as a background value. H is the observa-
tional operator and the matrices, B and R, are the covari-
ances of background and observational error, respectively.   

Briefly, application of the updated method requires 
generating N random perturbation fields using a 
Monte-Carlo method and adding each perturbation to the 
initial background field at a time level t = t0 before the 
assimilation time step to produce N initial fields, xn(t0), n 
= 1, 2,⋅⋅⋅, N. Additional steps involved in the method in-
volve integrating the forecast model 0( ( ))n nx M x t= to 
obtain the ensemble state, xn. When the ensemble size, N, 
is increased by adding random samples, the ensemble 
space may cover the analysis vector, xa. That is, xa is ap-
proximately assumed to be embedded in the linear space, 

1 2( , , , )Nx x xΩ  that comprises the ensemble members, 
xn (1≤n≤N). The analysis vector, xa, can then be ex-
pressed by the linear combinations of one set of base 

vectors of 1 2( , , , )Nx x xΩ  since it is contained in this 
space. 

The final task involves obtaining appropriate base 
vectors. We found that the POD technique was a good 
method for obtaining the appropriate base vectors. It can 
produce a set of base vectors spanning the ensemble of 
data in terms of least squares optimization (Ly and Tran, 
2001, 2002). We then applied the POD technique to the 
forecast ensemble so that the orthogonal base vectors 
could capture the ensemble state spatial structure, while at 
the same time reflecting its temporal evolution. After the 
model status is expressed with a truncated expansion of 
the base vectors, the data assimilation process becomes 
significantly simplified.  

The average of the ensemble of snapshots is given by:  

1

1 N

n
n

x x
N =

= ∑ .              (3) 

A new ensemble is formed by: 

n nx x xδ = −  (1≤n≤N),         (4) 

which forms the matrix A(M×N), where M=Mg×Mv and 
Mg, Mv are the number of model spatial grid points and 
the number of model variables, respectively. PODs for A 
can produce the POD modes φk (1≤k≤N). The truncated 
reconstruction of the analysis variable in the 3-D space,  
xa, is then given by: 

a
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where r is the rank of A and α=(α1,…αr) are the expan-
sion coefficients. The 3-D background error covariance is 
modeled approximately by:  

T
1 T( 1)
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N
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−
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where λ are the nonzero eigenvalues. By substituting Eqs. 
(5)−(6) into Eq. (1), the control variable becomes α = (α1, 
⋅⋅⋅, αr) instead of x. The cost function is further trans-
formed as follows: 
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where H is the tangent linear observation operator. The 
covariance for the observation error, R, is always diagonal 
and Φ = (φ1, φ2,..., φr). Since R is symmetrical, the gradi-
ent of the cost function is obtained through the following 
simplified calculation: 

( ) ( )T1 1( ) 2( 1) 2J N H y H x Hα λ α Φ Φα− −∇ = − − − −R . 

(8) 
One can solve the optimization problem as follows: 

( ) 0J α∇ = ,                (9) 
and 
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Eq. (10) can be solved directly and without an iterative 
procedure as follows: 
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Monte Carlo-based methods are also used to produce 
the ensemble in En3-DVar. However, unlike EnKF, the 
analysis procedure in En3-DVar is conducted when ob-
servational data are available.  

3  Numerical experiments 
This section describes the results of tests to apply this 

new updated methodology to land data assimilation. Sev-
eral assimilation experiments were undertaken with a 
simple 1-D soil-water equation model. In addition, com-
parisons of the En3-DVar and EnKF methods were per-
formed. 

3.1  Experimental design  

The conservation of water mass, (θ), for 1-D vertical 

(7)

(10)

(11)
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water flow in a soil column in the Community Land 
Model (CLM) (Bonan et al., 2002) is expressed as:  

fm
q E R

t z
θ∂ ∂

= − − −
∂ ∂

,           (12) 

where q is the vertical soil water flux (mm s−1) (note: the 
model assumes no horizontal water movement), E is the 
evapotranspiration rate, Rfm is the melting (negative) or 
freezing (positive) rate, and z is the soil depth from the 
surface. Both q and z are positive downward. 

The soil water flux, q, is described by Darcy’s law: 
( )zq k

z
ϕ∂ +

= −
∂

,              (13) 

where k is the hydraulic conductivity (mm s−1), and ϕ is 
the soil matrix potential (mm). The CLM computes soil 
water content in 10 soil layers (Table 1) by Eqs. 
(12)−(13).  
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where ks is the saturated hydraulic conductivity (mm s−1), 
θs is the saturated moisture, ϕs is the saturated soil matrix 
potential (mm), and b is the soil matrix constant (Table 2). 
The time step (Δt) is 1800 sec. 

In our experiments, the soil water equation model 
forced by “perfect” infiltration represents the perfect 
model, whereas the soil water equation model forced by 
the “imperfect” infiltration represents an imperfect model 
(Fig. 1). The “true” state is produced by integrating the 
“perfect” model with the “perfect” initial soil moisture 
(Fig. 2) for 365 days. The “imperfect” state is produced 
by integrating the “imperfect” model with the “imperfect” 
initial soil moisture. This means that the source of fore-
cast model error is not only associated with noise from the 
initial field but also from uncertainties in the forecast 
model. One assimilating observation frequency every 12 

hours was adopted for the group of experiments. An en-
semble size of 40 was used in experiments examining 
both assimilation methods. The “observations” were gen-
erated by adding 3% random error perturbations to the 
time series of the “perfect” state (i.e., “observation” = (1 
+ ε) ×“perfect”, where ε is a real random number vary-
ing from −3%−3%). These “observations” were assimi-
lated with both methods for the purpose of our experi-
ments, but not in the forecast experiments. In particular, 

only the skin layer soil moisture observation is used in 
our experiments.  

3.2  Experimental results 

We use the following root mean square error (RMSE) 
calculation of assimilated soil moisture (m3 m−3) to evalu-
ate our method: 

10
2

ass tru
1

1RMSE ( ( ) ( ))
10 i

i iθ θ
=

= −∑ ,      (15) 

where the subscript, ass, denotes the assimilated value, 
and the subscript, tru, stands for the true value. Fig. 3a 
shows the time series of daily RMSE values for the 
En3-DVar assimilated soil moisture (m3 m−3) with the 
12-hour sample observation frequency. The RMSE values 
for the En-3DVar is significantly lower than the EnKF 
values, especially from days 1−180. This indicates that 
the En3-DVar method performed much better than the 
EnKF. With the observations being assimilated, there is so 
much observation information merged into the analyzed 
soil moisture calculation that the error values for the 
En3-DVar became very low (Fig. 3a). On the contrary, the 
errors of the EnKF are not reduced as so much as the 
En3-DVar’s. Most of the observed En3DVar error is < 
0.01 m3 m−3 from days 81−180, whereas some of the 
EnKF error values approach 0.0218 m3 m−3. Similarly, the 

 
Table 1  Thickness of 10 soil layers. 

Soil layer 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Thicknesses (m) 1.75×10−2 2.75×10−2 4.54×10−2 7.49×10−2 0.12 0.20 0.34 0.55 0.91 1.14 
 

Table 2  Parameters used in the soil water equation model. 

θs ks b ϕs 

0.46 2.07263×10−6 m s−1 8.634 −3.6779 m 

 

 
 

Figure 1  The “perfect” (solid line) and “imperfect” (dashed line) infiltration time series used in the assimilation experiments. 
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Figure 2  The ‘‘perfect’’ (solid line) and ‘‘imperfect’’ (dashed line) 
initial soil moisture profiles used in the assimilation experiments. 

time series of daily observed and assimilated (En3-DVar 
and EnKF) volumetric soil moisture (m3 m−3) shown in 
Figs. 3b−c illustrates that the En-3DVar assimilated curve 
can be adjusted to approach the true curve more rapidly 
than in the EnKF method. 

The ratio of computational costs for the En3-DVar and 
EnKF methods was about 1:5 for the group of experi-
ments undertaken. High computational costs in the EnKF 
method were mainly due to the fact that the analysis 
process, which consists of sizable matrices, has to be 
conducted repeatedly during the assimilation process. 
Conversely, for the En3-DVar method, the computation is 
performed only when there are observations. Of course, 
this conclusion is case-dependent because the minimiza-
tion of cost functions may significantly vary within dif-
ferent numerical models. Nevertheless, our results show 
that the computational costs of the En3-DVar method 
should be relatively low.  

4  Summary and concluding remarks 
Land surface models are usually highly nonlinear with 

 

 
 

Figure 3  (a) Time series of RMSE (m3 m−3) for the En3-DVar and EnKF models of assimilated soil moisture; (b) Time series of the 1st layer ob-
served and assimilated (En3-DVar and EnKF) for volumetric soil moisture (m3 m−3); (c) Time series of the 7th layer observed and assimilated 
(En3-DVar and EnKF) for volumetric soil moisture (m3 m−3) with a 12-hour observation frequency. 
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model physics that contain parameterized discontinuities. 
hese model attributes severely limit the application of 
advanced variational data assimilation methods in land 
surface data assimilation. A new En3-DVar method for 
land data assimilation introduces a Monte Carlo sampling 
strategy into the typical 3-DVar model framework. A POD 
technique is used to efficiently approximate a forecast 
ensemble produced by the Monte Carlo method in 3-D 
space using a set of base vectors that span the ensemble. 
The data assimilation process is thus significantly simpli-
fied. Several numerical experiments performed with a 
simple 1-D soil water equation show that the new 
En3DVar method performed much better than the EnKF 
method. Assimilation errors using the new En3-DVar 
method were reduced to a fraction of those observed us-
ing the EnKF method. These results show that this up-
dated En3-DVar method provides a promising new tool 
for land surface data assimilation. 
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