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[1] The adjoint and tangent linear models in the traditional four-dimensional variational
data assimilation (4DVAR) are difficult to obtain if the forecast model is highly nonlinear
or the model physics contains parameterized discontinuities. A new method (referred
to as POD-E4DVAR) is proposed in this paper by merging the Monte Carlo method and
the proper orthogonal decomposition (POD) technique into 4DVAR to transform an
implicit optimization problem into an explicit one. The POD method is used to efficiently
approximate a forecast ensemble produced by the Monte Carlo method in a 4-dimensional
(4-D) space using a set of base vectors that span the ensemble and capture its spatial
structure and temporal evolution. After the analysis variables are represented by a
truncated expansion of the base vectors in the 4-D space, the control (state) variables in the
cost function appear explicit so that the adjoint model, which is used to derive the gradient
of the cost function with respect to the control variables in the traditional 4DVAR, is no
longer needed. The application of this new technique significantly simplifies the data
assimilation process and retains the two main advantages of the traditional 4DVAR
method. Assimilation experiments show that this ensemble-based explicit 4DVAR method
performs much better than the traditional 4DVAR and ensemble Kalman filter (EnKF)
method. It is also superior to another explicit 4DVAR method, especially when the
forecast model is imperfect and the forecast error comes from both the noise of the initial
field and the uncertainty in the forecast model. Computational costs for the new
POD-E4DVAR are about twice as the traditional 4DVAR method but 5% less than the
other explicit 4DVAR and much lower than the EnKF method. Another assimilation
experiment conducted within the Lorenz model indicates potential wider applications of
this new POD-E4DVAR method.
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1. Introduction

[2] The four-dimensional variational data assimilation
(4DVAR) method [Johnson et al., 2006; Kalnay et al.,
2007; Tsuyuki and Miyoshi, 2007] has been a very success-
ful technique used in operational numerical weather predic-
tion (NWP) at many weather forecast centers [Bormann and
Thepaut, 2004; Park and Zou, 2004; Caya et al., 2005;
Bauer et al., 2006; Rosmond and Xu, 2006; Gauthier et al.,
2007]. The 4DVAR technique has two attractive features:
(1) the physical (forecast) model provides a strong dynam-
ical constraint, and (2) it has the ability to assimilate the
observational data at multiple times. However, 4DVAR still
faces numerous challenges in coding, maintaining and
updating the adjoint model of the forecast model and it
requires the linearization of the forecast model. Usually, the

control variables (or initial states) are expressed implicitly in
the cost function. To compute the gradient of the cost
function with respect to the control variables, one has to
integrate the adjoint model, whose development and main-
tenance require significant resources, especially when the
forecast model is highly nonlinear and the model physics
contains parameterized discontinuities [Xu, 1996; Mu and
Wang, 2003]. Many efforts have been devoted to avoid
integrating the adjoint model or reduce the expensive
computation costs [Courtier et al., 1994; Kalnay et al.,
2000; Wang and Zhao, 2005], Nevertheless, the tangent
linear model of the forecast model is still required in all these
methods. On the other hand, the usual ensemble Kalman
Filter (EnKF) [e.g.,Evensen, 1994, 2003;Kalnay et al., 2007;
Beezley and Mandel, 2008; also see Appendix A] has
become an increasingly popular method because of its
simple conceptual formulation and relative ease of imple-
mentation. For example, it requires no derivation of a
tangent linear operator or adjoint equations, and no integra-
tions backward in time. Furthermore, the computational
costs are affordable and comparable with other popular
and sophisticated assimilation methods such as the 4DVAR
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method. By forecasting the statistical characteristics, EnKF
can provide flow-dependent error estimates of the back-
ground errors using the Monte Carlo method, but it lacks the
dynamic constraint as in 4DVAR. Heemink et al. [2001]
developed a variance reduced EnKF method by using a
reduced-rank approximation technique to reduce the huge
amount of computer costs. Farrell and Ioannou [2001] also
proposed a reduced-order Kalman filter by the balanced
truncation model-reduction technique. Uzunoglu et al.
[2007] modified a maximum likelihood ensemble filter
method [Zupanski, 2005] through an adaptive methodology.
Generally, these three methods mentioned above belong to
the Kalman filters. Vermeulen and Heemink [2006] have
attempted to combine 4DVAR with EnKF; however, the
tangent linear model is still needed in their method. How to
retain the two primary advantages of the traditional 4DVAR
while avoiding the need of an adjoint or tangent linear
model of the forecast model has become a roadblock in
advancing data assimilation. Recently, Qiu et al. [Qiu and
Chou, 2006; Qiu et al., 2007a, 2007b] proposed a new
method for 4DVAR (more details below) using the singular
value decomposition (SVD) technique based on the theory
of the atmospheric attractors. Cao et al. [2007] have
applied the proper orthogonal decomposition (POD) tech-
nique [Ly and Tran, 2001, 2002; Volkwein, 2008; also see
Appendix C] to 4DVAR to reduce the forecast model
orders while reducing the computational costs, but the
adjoint integration is still necessary in their method. Luo et
al. [2007] also applied the POD technique to the tropical
ocean reduced gravity model.
[3] Here we resort to the idea of the Monte Carlo method

and the POD technique. The basic idea of the POD
technique is to start with an ensemble of data, called
snapshots, collected from an experiment or a numerical
procedure of a physical system. The POD technique is then
used to produce a set of base vectors which span the
snapshot collection. The goal is to represent the ensemble
of the data in terms of an optimal coordinate system. That
is, the snapshots can be generated by a smallest possible set
of base vectors. On the basis of this approach, an explicit
new 4DVAR method is proposed in this paper: it begins
with a 4-D ensemble obtained from the forecast ensembles
at all times in an assimilation time window produced using
the Monte Carlo method. We then apply the POD technique
to the 4-D forecast ensemble, so that the orthogonal base
vectors cannot only capture the spatial structure of the state
but also reflect its temporal evolution. After the model
status is expressed by a truncated expansion of the base
vectors obtained using the POD technique, the control
variables in the cost function appear explicit, so that the
adjoint or tangent linear model is no longer needed.
[4] Our new method was motivated by the need to merge

the Monte Carlo method into the traditional 4DVAR to
transform an implicit optimization problem into an explicit
one. Our method not only simplifies the data assimilation
procedure but also maintains the two main advantages of the
traditional 4DVAR. This method is somewhat similar to Qiu
et al.’s SVD-based method (referred to as SVD-E4DVAR
hereafter, see Appendix B for details) because they both
begin with a 4-D ensemble obtained from the forecast
ensembles. However, they differ significantly in several
aspects as discussed in section 2.2. Hunt et al. [2004], John

and Hunt [2007] and Szunyogh et al. [2008] also developed
a 4-D ensemble Kalman filter that infers the tangent linear
model dynamics from the ensemble instead of the tangent-
linear map as done in the traditional 4DVAR, in which the
model states are expressed by the linear combinations of the
ensemble samples directly rather than some orthogonal base
vectors of the ensemble space. This method is also largely
Kalman filtering, with the generation of its ensemble space
being different from our method.
[5] We conducted several numerical experiments using a

one-dimensional (1-D) soil water equation and synthetic
observations to evaluate our new method in land data
assimilation. Comparisons were also made between our
method, SVD-E4DVAR [Qiu and Chou, 2006; Qiu et al.,
2007a, 2007b], traditional 4DVAR, and EnKF. We found
that our new ensemble-based explicit 4DVAR (referred to as
POD-E4DVAR) performs much better than the usual EnKF
method in terms of both increasing the assimilation precision
and reducing the computational costs. It is also better than
the traditional 4DVAR and SVD-E4DVAR, especially when
the forecast model is not perfect and the forecast error comes
from both the noise of the initial field and the uncertainty in
the forecast model. We also evaluate this approach using
the Lorenz model. The corresponding assimilation experi-
ments show that POD-E4DVAR can adjust the forecast
state to approach the true Lorenz curve rapidly only by
assimilating the observations twice in an assimilation cycle,
which indicates its potential applications in other fields.

2. Methodology

2.1. POD-E4DVAR Method

[6] In principle, the traditional, implicit 4DVAR (referred
to as I4DVAR) analysis of xa

! is obtained through the
minimization of a cost function J that measures the misfit
between the model trajectory Hk(xk

!) and the observation yk
!

at a series of times tk, t = 1, 2,� � �, m:

J x!0

� �
¼ x!0 � x!b

� �T
B�1 x!0 � x!b

� �
þ
Xm
i¼0

y!i � Hi x!i

� �� �T
R�1
i y!i � Hi x!i

� �� �
; ð1Þ

with the forecast model M0!k imposed as strong con-
straints, defined by

xk
!¼ M0!k x0

!� �
; ð2Þ

where the superscript T stands for a transpose, b is a
background value, index k denotes the observational time,
Hk is the observational operator, and matrices B and R are
the background and observational error covariances,
respectively. The control variables are the initial conditions
x0
! (at the start of the assimilation time window) of the
model. In the cost function (1) the control variable x0

! is
connected with xk

! through forward integration of (2) and
expressed implicitly, which makes it difficult to compute the
gradient of the cost function with respect to x0

!. Assuming
there are S time steps within the assimilation time window
(0, T), generate N random perturbation fields using the
Monte-Carol method and add each perturbation field to the
initial background field at t = t0 to produce N initial fields
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x!n(t0), n = 1,2,� � �N. Integrate the forecast model x!n(ti) =
Mi( x

!
n(ti�1)) with the initial fields x!n(t0)(n = 1, 2,� � �N)

throughout the assimilation time window to obtain the state
series x!n(ti)(i = 0,1, � � � S � 1) and then construct the

perturbed 4-D fields (snapshots) X
!

n(n = 1,2, � � � N) over the
assimilation time window:

X
!

n ¼ x!n t0ð Þ; x!n t1ð Þ; � � � ; x!n tS�1ð Þ
� �

; n ¼ 1; 2; � � �N : ð3Þ

It is obvious that such vectors can capture the spatial
structure of the model state and its temporal evolution. All
the perturbed 4-D fields X

!
n(n = 1, 2,� � �N) can expand a

finite dimensional space �ðX!1X
!

2 � � � X
!

N

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
Þ. Similarly, the

analysis field x!a(ti)(i = 0,1,2, � � � S � 1) over the same
assimilation time window can also be stored into the
following vector:

X
!

a ¼ x!a t0ð Þ; x!a t1ð Þ; � � � ; x!a tS�1ð Þ
� �

: ð4Þ

When the ensemble size N is increased by adding random
samples, the ensemble space could cover the analysis vector
X
!

a, i.e., X
!

a is approximately assumed to be embedded in the

linear space �ðX!1X
!

2 � � � X
!

N

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
Þ. Let X!bn(n = 1,2, � � � K, K �

N ) be the base vectors of this l inear space

�ðX!1X
!

2 � � � X
!

N

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
Þ, the analysis vector X

!
a can be expressed

by the linear combinations of this set of base vectors since it
is in this space, i.e.

X
!

a ¼
XK
n¼1

bn X
!

bn; ð5Þ

Substituting (4) and (5) into (1), the control variable
becomes b = (b1 � � � bK)

T instead of x!(t0), so the control
variable is expressed explicitly in the cost function and the
computation of the gradient is simplified greatly. The
tangent linear model or adjoint model is no longer required.
To minimize the cost function, equation (1) is transformed
into an explicit optimization problem with the variable
vector b = (b1 � � � bK)

T, which can be solved by the usual
optimization algorithms, such as the quasi-Newton method.
It is noted that, unlike EnKF, only one analyzed field is
obtain in each analysis procedure in POD-E4DVAR and the
initial condition should be perturbed at the start time of the
assimilation in each cycle.
[7] How to obtain the appropriate base vectors remains

the only task left. We found that the POD technique is a
good choice for doing this. It can produce a set of base
vectors spanning the ensemble of data in certain least
squares optimal sense [Ly and Tran, 2001, 2002].
[8] The average of the ensemble of snapshots is given by

X ¼ 1

N

XN
n¼1

X
!

n: ð6Þ

We form a new ensemble by focusing on deviations from
the mean as follows

dXn ¼ X
!

n � X ; n ¼ 1; � � �N ; ð7Þ

which form the matrix A(M 	 N), where M = Mg 	 Mv 	 S,
and Mg, Mv are the number of the model spatial grid points
and the number of the model variables respectively. To
compute the POD modes, one must solve an M 	 M
eigenvalue problem:

AAT
� �

M	M
V ¼ lV

In practice, the direct solution of this eigenvalue problem is
often not feasible if M 
 N, which occurs often in
numerical models. We can transform it into an N 	 N
eigenvalue problem through the following transformations:

ATAV ¼ lV ;

AATAV ¼ AlV ;

AATAV ¼ AlV ;

AAT AVð Þ ¼ l AVð Þ:

In the method of snapshots, one then solves the N 	 N
eigenvalue problem

TVk ¼ lkVk ; k ¼ 1; � � �N ; ð8Þ

where T = (ATA)N	N, Vk is the kth column vector of V and is
the kth row vector of l. The nonzero eigenvectors lk (1 �
k � N) may be chosen to be orthonormal, and the POD
modes are given by fk = AVk/

ffiffiffiffiffi
lk

p
, (1 � k � N).

[9] The truncated reconstruction of analysis variable in
the four-dimensional space X

!
a is given by

X
!

a ¼ X þ
XP
j¼1

ajfj; ð9Þ

where P (the number of the POD modes) is defined as
follows

P ¼ min P; I Pð Þ ¼

PP
i¼1

li

PN
i¼1

li

: I Pð Þ � g

8>>><
>>>:

9>>>=
>>>;; 0 < g � 1: ð10Þ

It is well known [Ly and Tran, 2001, 2002] that the
expansion (9) is optimal. In particular, among all linear
combinations, the POD is the most efficient, in the sense
that, for a given number of modes P, the POD decomposi-
tion captures the most possible kinetic energy. The solution
for the analysis problem is approximately expressed by a
truncated expansion of the POD base vectors in the 4-D
space. Substituting (9) and (4) into (1), the control variable
becomes a = (a1, a2, � � �, aP)

T instead of x!0, so the control
variable is expressed explicitly in the cost function and the
tangent linear model or adjoint model is not needed anymore.
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[10] In the above formulations, the usual optimization
algorithms to find the solution of a = (a1, � � �, aP)

T still
need an iterative procedure and likely result in higher
computational costs. This issue is addressed as follows:
[11] Form the POD mode matrix

F ¼ f1;f2; � � � ;fPð Þ; ð11Þ

where fj = (fj(t0), fj(t1), � � �, fj(tS�1))
T, j = 1, 2, � � �, P.

Transform (11) into the following format

F ¼ F0;F1; � � � ;FS�1ð ÞT ; ð12Þ

where Fk = (f1(tk), f2(tk), � � �, fP(tk)).
Equation (9) is rewritten as follows:

Xa ¼ X þ Fa; ð13Þ

where a = (a1, a2, � � �, aP)
T. The cost function (13) can be

transformed into the following

J að Þ ¼ x t0ð Þ þ F0a� x!b

� �T
B�1 x t0ð Þ þ F0a� x!b

� �
þ
Xm
j¼0

y!j � Hjx tj
� �

� HjFja
� �T

� R�1
j y!j � Hjx tj

� �
� HjFja

� �
; ð14Þ

where Hj is the tangent linear observation operator.
[12] Given the vector of measurements y!j = (yj1, � � �, yjmj

),
where mj is the size of y!j, we can define the N vectors with
perturbed observations as

Yi;j ¼ y!j þ ei; i ¼ 1; � � �N ;

where ei = (ei,1, ei,2, � � �, ei,mj
)T. The ensemble of

perturbations, with ensemble mean equal to zero, can be
stored in the matrix Ej = (e1, e2, � � �, eN). The measurement
error covariance matrix can be estimated by

Rj ¼
EjE

T
j

N � 1
; j ¼ 0; � � � ;m: ð15Þ

Because Rj
�1 is symmetrical, the gradient of the cost

function is obtained through simple calculations

rJ að Þ ¼ F0ð ÞTB�1 x t0ð Þ � x!b þ F0a
� �

þ
Xm
j¼0

� HjFj

� �T
R�1
j y!j � Hjx tj

� �
� HjFja

� �
; ð16Þ

One can solve the optimization problem as follows

rJ að Þ ¼ 0; ð17Þ

and

F0ð ÞTB�1F0 þ
Xm
j¼0

HjFj

� �T
R�1
j HjFj

� � !
a

¼
Xm
j¼0

HjFj

� �T
R�1
j y!j � Hjx tj

� �� �
� F0ð ÞTB�1 x t0ð Þ � xbð Þ: ð18Þ

Equation (18) can be solved directly without an iterative
procedure (see Figure 1 for a flowchart of the outlined
method).

2.2. Difference Between the POD- and SVD-Based
Methods

[13] The two explicit (i.e., the POD- and SVD-based)

methods are essential for constructing a forecast ensemble

W(X
!

1X
!

2 � � � X
!

N

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
) in a 4-D space with a view to cover the

analysis state over each assimilation time window. Since the
4-D analysis vector is assumed to be in the linear space, it
can be expressed by a set of base vectors of this space. How
to extract the base vectors becomes the key to the two
methods: neither of the two methods decomposes the
ensemble AM	N = (X1, X2, � � �, XN) directly (i.e., dXn =
X
!

n � 0, n = 1, � � �, N, referred to as Full-E4DVAR
hereafter) instead of forming another ensemble by focusing
on deviations from the mean or the background vector
separately. The two different vector transformations (dXn =
X
!

n � X (Xb)) differentiate them clearly and affect their
assimilation performance considerably even though POD
and SVD techniques are closely related (see http://
www.uni-graz.at/imawww/volkwein/svd.ps):
[14] Given a forecast ensemble matrix AM	N = (X1, X2,

� � �, XN), Xn 2 RM, one can define the following L2 norm k�k
subjected to

jjXnjj2 ¼
XM
i¼1

X 2
ni: ð19Þ

As in (X. Tian and Z. Xie, Effects of sample density on the
performance of an explicit four-dimensional variational data
assimilation method, submitted to Science in China (D),
2008), we define the mean norm R of the ensemble A

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

jjXnjj2
vuut ; ð20Þ

For a given sample number N, we propose a concept of
sample density as follows:

r ¼ N

p
M
2

G M
2
þ 1

� �RM

; ð21Þ

where G is the Gamma function. We want to look for a
vector X* 2 RM to minimize

R Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

jjXn � X jj2
vuut ; ð22Þ

which leads to the maximum sample densi ty

rmax =
N

p
M
2

G M
2
þ 1ð Þ R X �ð Þ

� �M . The assimilation performance

would be most efficient if r =
N

p
M
2

G M
2
þ 1ð ÞR

M
reaches its
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Figure 1. The algorithmic flowchart of the POD-E4DVAR method.
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maximum value rmax for the given sample ensemble, which
means one single sample vector can represent the least ‘‘true
space’’ and then gain the best assimilation effect. Straightfor-
ward calculations show that the function (22) is minimized

when X* = X ¼ 1
N

PN
n¼1

Xn. It should be noted that even minor

deviations, which always exist, of the background vector X b

from the mean vector X would result in the sample density
difference being magnified greatly by M orders (�106) in the
commonly used climate model:

rX
rXb

¼

N

p
M
2R

M

X =G
M
2
þ 1

� �
N

p
M
2R

M

Xb
=G M

2
þ 1

� � ¼
RXb

RX

 !M

: ð23Þ

The above POD-E4DVAR method also differs from SVD-
E4DVAR significantly in two technical aspects:
[15] 1. the 4-D sample in the SVD-E4DVAR method is

only composed of the state vectors at the observational
times over the assimilation time window, while it is com-
posed of the state vectors at all the time steps over the
assimilation time window in the POD-EDVAR method.
The latter contains the most possible forecast information
in the assimilation time window.
[16] 2. The application of the matrix transformation

technique in the POD-E4DVAR greatly lowers the compu-
tational costs by reducing the decomposition into an N 	 N
eigenvalue problem (N � M).

3. Evaluations in a 1-D Soil Water Model

[17] In this section, the applicability of this new method
is evaluated through several assimilation experiments with
a simple 1-D soil water equation model used in the NCAR

Community Land Model (CLM) [Oleson et al., 2004]. In
addition, we also compare assimilation results using the Full-
E4DVAR, SVD-E4DVAR, I4DVAR, and EnKF methods.

3.1. Setup of Experiments

[18] The volumetric soil moisture (q) for 1-D vertical
water flow in a soil column in the CLM is expressed as

@q
@t

¼ � @q

@z
� E � Rfm; ð24Þ

where q is the vertical soil water flux, E is the
evapotranspiration rate, and Rfm is the melting (negative)
or freezing (positive) rate, (for simplicity, E, Rfm are taken as
zero in the experiments), and z is the depth from the soil
surface. Both q and z are positive downward.
[19] The soil water flux q is described by Darcy’s law

[Darcy, 1856]:

q ¼ �k
@ 8þ zð Þ

@z
; ð25aÞ

where k = ks
q
qs

� �
2b+3 is the hydraulic conductivity, and

8 = 8s
q
qs

� �
�b is the soil matrix potential, ks, 8s, qs and

b are constants. The CLM computes soil water content
in the 10 soil layers through ((24)–(25)) (see Oleson et
al. [2004] for details). The upper boundary condition is

q0 tð Þ ¼ �k
@ 8þ zð Þ

@z

����
z¼0

; ð25bÞ

where q0(t) is the water flux at the land surface
(referred to as infiltration), and the lower boundary condition
is ql = 0. The time step Dt is 1800 s (0.5 hour).

Figure 2. The ‘‘perfect’’ (solid line) and ‘‘imperfect’’
(dashed line) infiltration time series used in the assimilation
experiments.

Figure 3. The ‘‘perfect’’ (solid line) and ‘‘imperfect’’
(dashed line) initial soil moisture profiles used in the
assimilation experiments.
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[20] We took a site at (47.43�N, 126.97�E) as the
experimental site. The soil parameters ks, 8s, qs and b
at this site were calculated by the CLM using the high-
resolution soil texture data released with the CLM by
NCAR: qs = 0.46m3/m3, ks = 2.07263E-6 m/s, b = 8.634,
8s = �3.6779 m. We then ran the model at the site forced
with observation-based 3-hourly forcing data [Qian et
al., 2006; Tian et al., 2007] from 1 January 1992 to
31 December 1993 after ten-year spinning-up to obtain a
two-year time series of simulated infiltration (i.e., the water
flux q at the surface, c.f., equation (25b)) for driving the soil
water hydrodynamic equation (24). We used the first year
(1 January 1992 to 31 December 1992) data of CLM-
simulated infiltration as the ‘‘perfect’’ infiltration series,
and took the second year data as the ‘‘imperfect’’
infiltration series (Figure 2). In our experiments, we
integrated the soil water hydrodynamic equation (24)
forced by the two infiltration time series for 365 days
separately: equation (24) forced by the ‘‘perfect’’ infiltra-
tion series represents the perfect forecast model, whose

forecast error comes only from the noise in the initial
(soil moisture) field; on the contrary, equation (24) forced
by the ‘‘imperfect’’ infiltration series acts as the ‘‘imper-
fect’’ forecast model, whose forecast error comes from
not only the noise of the initial field but also the
uncertainty in the forecast model itself.
[21] Figure 3 shows the ‘‘imperfect’’ and the ‘‘perfect’’

initial soil moisture profiles, which were obtained by
randomly taking two arbitrary CLM-simulated soil moisture
profiles in the process of the infiltration series producing.
These profiles represent the initial fields with and without
noise. The ‘‘perfect’’ (or ‘‘true’’) state was produced by
integrating the ‘‘perfect’’ model with the ‘‘perfect’’ initial
soil moisture profile for 365 days. The ‘‘observations’’ were
generated by adding 3% random error perturbations to the time
series of the ‘‘perfect’’ state (i.e., ‘‘observation’’ = (1 + e) 	
‘‘perfect’’, where e is a real randomnumber varying from�3%
to 3%), and these ‘‘observations’’ were assimilated using the
various methods in the assimilation experiments (but not in
the forecast experiments). In addition, two separate forecast

Figure 4. Relative error (En) for analyzed soil moisture in the assimilation experiments by the perfect
model with the ‘‘imperfect’’ initial field.
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states were produced by integrating the perfect and imperfect
models with the ‘‘imperfect’’ initial soil moisture separately:
for the former case, the forecast error comes only from the
noise in the initial field, but in the latter case it comes from
both the noise and the uncertainty in the forecast model.
[22] The length of an assimilation time window in our

experiments is one day (48 time steps), i.e., S = 48. The size
of Xn = (xn(t1), xn(t2), � � �, xn(tS � 1)) in our method is 480,
where xn(ti) = (qn1(ti), qn2(ti), � � �, qn10(ti)) andMg = 10,Mv = 1.
The background and observational error covariance matrices
used in the E/I4DVAR methods can be obtained by using the
ensemble covariance matrices defined by equations (A4) and
(A8), respectively. We used g = 0.90 in our experiments.
[23] Two groups of experiments were done: The perfect

model with the ‘‘imperfect’’ initial field as Group 1 and the
imperfect model with the ‘‘imperfect’’ initial field as Group 2.
Three observation sampling frequencies (hourly, 2-hourly,
and 3-hourly) were tested in each group’s experiments. For
simplicity, the Full-E4DVAR is only tested in Group 2. The
ensemble size used in the Full-, POD- and SVD-E4DVAR
and EnKF methods was 60 in this study (the impact of the
ensemble size on the assimilation results will be discussed

in another study). The linearization of the soil moisture
equation (24) follows the format of Zhang et al. [2006].

3.2. Experimental Results

[24] To evaluate the performance of the five algorithms
(Full-E4DVAR, SVD-E4DVAR, POD-E4DVAR, I4DVAR
and EnKF), a relative error is defined as follows

Et0!S�1
¼

PS�1

i¼0

PMg	Mv

j¼1

x!a

j tið Þ � x!t

j tið Þ
� �2

PS�1

i¼0

PMg	Mv

j¼1

x!f

j tið Þ � x!t

j tið Þ
� �2 ; ð26Þ

where the index t0!S�1 denotes an assimilation time
window (one day in our experiments), S is the length of
an assimilation window (S = 48 in our experiments), f and a
denote the forecast state (without assimilation of the
‘‘observations’’) and the analysis state, respectively, t
represents the ‘‘true’’ (‘‘perfect’’) state. Thus a relative
error of 1% for a given assimilation method would mean

Figure 5. Relative error (En) for analyzed soil moisture in the assimilation experiments by the imperfect
model with the ‘‘imperfect’’ initial field.
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that the mean error of the analyzed soil moisture is only 1%
of that in the forecast case.
[25] Figures 4–5 show that the POD/SVD-E4DVAR

methods perform much better than the EnKF and I4DVAR
methods in both groups of experiments. The two explicit
4DVAR methods perform almost same in Group 1 experi-
ments. Their relative errors for analyzed soil moisture are
very small (<1%) in the case that the forecast model is
perfect, in which the forecast error comes only from the
noise of the initial field (Figure 4). However, the relative
errors of the EnKF method are many times higher than those
of POD/SVD-E4DVAR, around 1� 2% or so. The tradi-
tional 4DVAR method performs even worse than EnKF,
which is consistent with the results of Reichle et al.
[Reichle and Entekhabi, 2001; Reichle et al., 2002a,
2002b]. This is expected because the soil water hydrody-
namic equation (24) is a highly nonlinear system and the
tangent linearization operator used in the usual 4DVAR
can only propagate analytically with the first-order preci-
sion, which introduces large errors in variable estimation
and leads to sub-optimal performance.
[26] When the forecast model is imperfect, its forecast

error comes from both the noise of the initial field and the
uncertainty in the model itself. The relative errors of the
four methods all become larger in this case (Figure 5),
presumably due to the reduced effect of data assimilation
under a poorly constrained model. Nevertheless, the relative
errors for POD-E4DAVR are substantially smaller than
those of the other methods, including SVD-E4DVAR which
performs similarly with the EnKF in this case. The relative
errors of POD-E4DVAR are still in the range of 0–6 %;
however, the relative errors of the I4DVAR and SVD-
E4DVAR methods are higher than 6%, and some are even
up to 10%. It is also a bit surprising that the SVD-based
method is apparently inferior to POD-E4DVAR in some
assimilation time windows and even worse than the EnKF
method (Figure 4). The relative errors of the Full-E4DVAR

method fluctuate in magnitude between 20 and 60% (not
shown). Direct comparisons between the Full-E4DVAR
assimilations, the simulations and the truth show that Full-
E4DAVR performs even worse than the pure simulation
sometimes. This can be explained by the difference between
the mean norms of Full-, SVD-, and POD-E4DVAR: the
time-averaged mean norms of the SVD- and POD- based
methods are around 1.8 	 10�2 and 1.7 	 10�2 respectively
in Group 2 experiments (Figure 6). On the contrary, the
mean norms of Full-E4DVAR are all higher than 2.06 (not
shown). The huge difference between their (Full- and POD/
SVD-E4DVAR) mean norms leads to a very small sample

density ratio

�
1:8 	 10�2

2:06

� �
M or 1:7 	 10�2

2:06

� �
M, M = 240

�
.

The higher mean norm of Full-E4DVAR results in its lower
sample density and poor assimilation performance. Similarly,
the ratio between the mean norms of the POD- and SVD-
E4DVAR methods is about 0.94, which also affects their
sample densities (rPOD:rSVD = 1

0:94

� �
M, M = 240) and makes

POD-E4DVAR outperforming SVD-E4DVAR. Figures 4–5
also show that the observation frequency has larger impacts
in the I4DVAR method than in the POD-E4DVAR method.
[27] For the two groups of experiments, the ratio of the

computational costs for the four methods (POD-E4DVAR,
SVD-E4DVAR, I4DVAR, and EnKF) is about 1:1.05:0.
5:30. The high computational cost in the EnKF method is
mainly due to the fact the analysis process consists of huge
matrix and the computation has to be conducted repeatedly
when there are observations in the assimilation time win-
dow, while in POD-E4DVAR the computation is performed
only once in each cycle. The 5% reduction in POD-
E4DVAR compared with SVD-E4DVAR results from the
application of the matrix transformation technique described
in section 2. We also implemented a usual iterative method
for optimization [Liu and Nocedal, 1989] into POD-
E4DVAR in the same framework to investigate how the
direction solution method proposed in this paper reduces its
computational costs. The experiments show that the radio of
their (the direct solution method and the iterative method)
computational costs varies around 1:10 to 1:5 or so. Of
course, this conclusion is not absolute and case-dependent
because the scale of the minimization of cost functional and
the iteration times during each assimilation cycle vary
greatly within different numerical models. The main com-
putational costs of POD-E4DVAR come from the ensemble
integrations over the assimilation time window, which can
be done on parallel computers. Thus the additional costs of
POD-E4DVAR compared with the traditional 4DVAR
should not result in real difficulties, and it still costs only
one thirtieth of that of the EnKF method in our experiments.

4. Evaluations Within the Lorenz Model

[28] In this section, our approach (POD-E4DVAR) is
further evaluated within the Lorenz model for investigating
its wider applications. The Lorenz model is widely used to
test the new proposed methods in data assimilation com-
munity: e.g., Xiong et al. [2006] used it to test the
performances of the EnKF and PF (particle filter) methods.
Their results show that the PFGR (PF with Gaussian
resampling) method possesses good stability and accuracy

Figure 6. Time series of mean norm for the Full-E4DVAR
(solid line), SVD-E4DVAR (long dashed line), and POD-
E4DVAR (short dashed line) methods in Group 2 experiments.
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and is potentially applicable to large-scale data assimila-
tion problems.

4.1. Setup of Experiments

[29] The Lorenz system under chaotic regime is used as a
test problem, which is given by equation (e.g., see http://
www.taygeta.com/perturb/node2.html):

dx

dt
¼ �s x� yð Þ; ð27aÞ

dy

dt
¼ rx� y� xz; ð27bÞ

dz

dt
¼ xy� bz; ð27cÞ

For numerical experiments the Lorenz system with para-
meters s = 10, r = 28, b = 8

3
was integrated using a second-

order Runge Kuatta’s method, with Dt = 0.1, and initial
conditions x(0) = �1.5, y(0) = �1.5, z(0) = 25 or the true
solution and x(0) = �1.52, y(0) = �1.3, z(0) = 27 for

background solution (a-priori forecast). The observation
insertion is done at each 12 time-step. The length of each
assimilation time window is 24 time-step.

4.2. Experimental Results

[30] Figure 7 shows time series of the Lorenz curve
coordinates (x, y, z) from observations, assimilations and
background forecasts: the assimilated Lorenz curve is
adjusted to approach the true curve rapidly at the end of
the first assimilation cycle, even though there are only two
observations in each assimilation time window. On the
contrary, the pure forecast state without assimilations begins
to deviate from the true solution after 60 time-step or so
(Figure 7), even though the noise of the initial filed (x, y, z)
only results in small departures from the true state in the
first 48 time steps or two assimilation time windows.

5. Summary and Concluding Remarks

[31] To retain the main strength of traditional 4DVAR
while avoiding the need of an adjoint or tangent linear
model of the forecast model in data assimilation, we have
developed an ensemble-based explicit 4DVAR method in

Figure 7. Time series of the Lorenz curve coordinates (x, y, z) from observations (solid line),
assimilations (long dashed line), and background forecasts (short dashed line).
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this paper (called POD-E4DVAR). This new method merges
the Monte Carlo method and the proper orthogonal decom-
position (POD) technique into the 4DVAR to transform an
implicit optimization problem into an explicit one. The POD
method efficiently approximates a forecast ensemble pro-
duced by the Monte Carlo method in a 4-D space using a set
of base vectors that span this ensemble and capture its
spatial structure and temporal evolution. After the analysis
variables are represented by a truncated expansion of the
base vectors in the 4-D space, the control (state) variables in
the cost function appear explicit, so that the adjoint model,
which is used to derive the gradient of the cost function with
respect to the control variables in traditional 4DVAR, is no
longer needed. This new method significantly simplifies the
data assimilation process and retains the two main advan-
tages of the traditional 4DVAR (i.e., dynamic constraint and
assimilation of multiple time observations).
[32] Several numerical experiments performed with a

simple 1-D soil water equation show that the new POD-
E4DVAR method performs much better than the traditional
4DVAR and EnKF method with assimilation errors being
reduced to a fraction of the latter two. It is also superior to
the SVD-E4DVAR, another explicit 4DVAR method devel-
oped by Qiu et al. [2007a, 2007b], especially when the
forecast model is imperfect and the error comes from both
the noise of the initial field and the uncertainty in the
forecast model. In our experiments, the traditional (implicit)
4DVAR method performs worst, which is due to errors
associated with the tangent linearization operator used in the
usual 4DVAR that only propagates analytically with the
first-order precision. Another assimilation experiment con-
ducted within the Lorenz model also shows its potential
applications in numerical weather or climate models. The
results show that the POD-E4DVAR method provides a
promising new tool for data assimilation.
[33] Several issues, such as the impacts of the ensemble

size and the initial perturbation fields on the assimilated
results and the actual performance of this new method in
real numerical forecast models, still need to be addressed. It
also should be pointed out that since this method begins
with a 4-D ensemble obtained from the perturbed ensem-
bles, the quality of the results relies heavily on the pertur-
bation method. How to generate a reasonable perturbed field
is a critical step in using this method. This aspect also
requires further investigation.

Appendix A: Ensemble Kalman Filter
(EnKF) Method

A1. Ensemble Representation for Covariance Matrix

[34] One can define the matrix holding the ensemble
members x!i 2 Rn as

A ¼ x!1; x
!

2; � � � ; x!N

� �
2 Rn	N ; ðA1Þ

where N is the number of ensemble members and n is the
size of the model state vector.
[35] The ensemble mean is stored in each column of A

which can be defined as

A ¼ A1N ; ðA2Þ

where 1N 2 RN 	 N is a matrix in which each element is
equal to 1/N. One can then define the ensemble perturbation
matrix as

A0 ¼ A� A ¼ A I � 1Nð Þ; ðA3Þ

The ensemble covariance matrix Pe 2 Rn	n can be defined
as

Pe ¼
A0 A0ð ÞT

N � 1
: ðA4Þ

A2. Measurement Perturbations

[36] Given a vector of measurements y 2 Rm, with m
being the number of measurements, one can define N
vectors of perturbed observations as

y!j ¼ y!þ ej; j ¼ 1; 2; � � � ;N ; ðA5Þ

which can be stored in the columns of a matrix

Y ¼ y!1; y
!

2; � � � ; y!N

� �
2 Rm	N ; ðA6Þ

while the ensemble of perturbations, with ensemble mean
equal to zero, can be stored in the matrix

E ¼ e1; e2; � � � eNð Þ 2 Rm	N ; ðA7Þ

from which we can construct the ensemble representation of
the measurement error covariance matrix

Re ¼
EET

N � 1
; ðA8Þ

A3. Analysis Equation

[37] The analysis equation, expressed in terms of the
ensemble covariance matrices, is

Aa ¼ Aþ PeH
T HPeH

T þ Re

� ��1
D� HAð Þ: ðA9Þ

Using the ensemble of innovation vectors defined as

D0 ¼ D� HA; ðA10Þ

and the definitions of the ensemble error covariance
matrices in equations (A4) and (A8), the analysis can be
expressed as

Aa ¼ Aþ A0A
0THT HA0A

0THT þ EET
� ��1

D0: ðA11Þ

When the ensemble size, N, is increased by adding random
samples, the analysis computed from this equation will
converge toward the exact solution of equation (A9) with Pe

and Re replaced by the exact covariance matrices P and R.

Appendix B: SVD-E4DVAR Method

[38] Assuming there are m observations y!i (i = 0,1,� � �,
m � 1) at time t = t0, � � �, ti, � � �, tm�1 during the

D21124 TIAN ET AL.: AN ENSEMBLE-BASED 4DVAR

11 of 13

D21124



assimilation time window. Generate N random perturbation
fields and add each to the initial background field and
integrate the model to produce a perturbed 4-D field over
the analysis time window. The ith difference field is then
given by d x!i = x!i � x!b at time t = t0, � � �, ti, � � �, tm � 1,
where x!b, x!i denote the background and the perturbed
fields, respectively. Consider an ensemble of column
vectors represented by matrix A = (dX

!
1, dX

!
2, � � � dX

!
N),

where the ith column vector dX
!

i represents the ith
sampled data field in a discrete four-dimensional analysis
space. The length of vector dX

!
i is Mg 	 Mv 	 m, where

Mg, Mv are the number of the model spatial grid points and
the number of the model variables, respectively. The SVD
of A yields

A ¼ BLVT ; ðB1Þ

where L is a diagonal matrix composed of the singular
values of Awith l1 � l2 � � � � � lr and lr + 1 = lr + 2 = � � �
= 0, r � min(Mg 	 Mv 	 m,N), is the rank of A, B and V are
orthogonal matrices composed of the left and right singular
vectors of A, respectively. The SVD in (B1) gives C = ATA =
VL2VT and Q = AAT = BL 2BT. Thus the ith column vector
of V, denoted by Vi, is the ith eigenvector of C, while the jth
column vector of B, denoted by bj, is the jth column vector
of Q and is called the singular vector of A.
[39] The truncated reconstruction of analysis variable X

!
a

in 4-D space is given by

X
!

a ¼ X
!

b þ
XP
i¼1

aibi; ðB2Þ

where P(�r) is the truncation number, which can be
obtained through equation (10) in section 2, X

!
b = ( x!b, x!b,

� � �, x!b) is composed of m vectors ( x!b).
[40] Substituting (B2) into equation (1) in section 2, the

control variable becomes a instead of x!0, so the control
variable is expressed explicitly in the cost function.

Appendix C: Proper Orthogonal
Decomposition

C1. Continuous Case

[41] Let Ui ( x!), i = 1,2,� � � N denote the set of N
observations or simulations (also called snapshots) of some
physical process taken at position x! = (x, y). The average of
the ensemble snapshots is given by

U ¼ 1

N

XN
i¼1

Ui x!
� �

; ðC1Þ

[42] We form new ensemble by focusing on deviation
from mean as follows:

Vi ¼ Ui � U ; ðC2Þ

[43] We wish to find an optimal compressed description
of the sequence of data (C2). One description of the process

is a series expansion in terms of a set of base functions.
Intuitively, the base functions should in some sense be
representative of the members of the ensemble. Such a
coordinate system, is provided by the Karhunan Loève
expansion, where the base functions F are, in fact, admix-
tures of the snapshots and are given by:

F ¼
XN
i¼1

aiVi x!
� �

; ðC3Þ

Here, the coefficients ai are to be determined so that F given
by (C3) will resemble the ensemble {Vi( x

!)}i=1
N most

closely. More specifically, we look for a function F to
maximize

1

N

XN
i¼1

j Vi;Fð Þj2; ðC4Þ

subjected to (F, F) = kFk2 = 1, where (.,.) and k � k denote
the usual L2 inner product and L2-norm, respectively.
[44] It follows that the base functions are the eigenfunc-

tions of the integral equation

Z
C x!; x!0
� �

F x!0
� �

d x!0 ¼ lF x!
� �

; ðC5Þ

Substituting (C3) into (C5) yields the eigenvalue problem:

XN
j¼1

Lijaj ¼ lai; ðC6Þ

where Lij =
1
N
(Vi, Vj) is a symmetric and nonnegative matrix.

Thus our problem amounts to solving for the eigenvectors
of an N 	 N matrix, where N is the ensemble size of the
snapshots. Straightforward calculation shows that the cost
function

1

N

XN
i¼1

j Vi;Fð Þj2 ¼ lF;Fð Þ ¼ l; ðC7Þ

is maximized when the coefficients ai’s of (C3) are the
elements of the eigenvector corresponding to the largest
eigenvalue of L.

C2. Discrete Case

[45] We consider the discrete Karhunan Loève expansion
to find an optimal representation of the ensemble of snap-
shots. In the two-dimensional case, each sample of snap-
shots Ui(x, y) (defined on a set of n 	 n nodal points (x, y))
can be expressed as an n2 dimensional vector u!i as follows:

u!i ¼

u!i1

..

.

u!ij

..

.

u!in2

2
6666664

3
7777775; ðC8Þ
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where u!ij denotes the jth component of the vector u!i. Here
the discrete covariance matrix of the ensemble u! is defined
as

C
u! ¼ E u!� m!

u!
� �

u!� m!
u!

� �T% &
; ðC9Þ

where

m!
u! ¼ E u!

' (
ðC10Þ

is the mean vector, E is the expected value. Equations (C9)
and (C10) can be replaced by

C
u! ¼ 1

N

XN
i¼1

u!i u
!T

j

" #
� m!

u!m!T

u!

and m!
u! ¼ 1

N

PN
i¼1

u!i respectively.
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